We have now discussed most of the relevant bits of technology for token server construction and deployment. Armed with that knowledge we can tackle the most important part of the tokenization discussion: use cases. Which model is right for your particular environment? What factors should be considered in the decision? The following three or four uses cases cover most of the customer situations we get calls asking for advice on. As PCI compliance is the overwhelming driver for tokenization at this time, our first two use cases will focus on different options for PCI-driven deployments.

Mid-sized Retail Merchant

Our first use case profiles a mid-sized retailer that needs to address PCI compliance requirements. The firm accepts credit cards but sells exclusively on the web, so they do not have to support point of sale terminals. Their focus is meeting PCI compliance requirements, but how best to achieve the goal at reasonable cost is the question. As in many cases, most of the back office systems were designed before credit card storage was regulated, and use the CC# as part of the customer and order identification process. That means that order entry, billing, accounts receivable, customer care, and BI systems all store this number, in addition to web site credit authorization and payment settlement systems.

Credit card information is scattered across many systems, so access control and tight authentication are not enough to address the problem. There are simply too many access points to restrict with any certainty of success, and there are far too many ways for attackers to compromise one or more systems. Further, some back office systems are accessible by partners for sales promotions and order fulfillment. The security efforts will need to embrace almost every back office system, and affect almost every employee. Most of the back office transaction systems have no particular need for credit card numbers – they were simply designed to store and pass the number as a reference value. The handful of systems that employ encryption are transparent, meaning they automatically return decrypted information, and only protect data when stored on disk or tape. Access controls and media encryption are not sufficient controls to protect the data or meet PCI compliance in this scenario.

While the principal project goal is PCI compliance; as with any business strong secondary goals of minimizing total costs, integration challenges, and day to day management requirements. Because the obligation is to protect card holder data and limit the availability of credit cards in clear text, the merchant does have a couple choices: encryption and tokenization. They could implement encryption in each of the application platforms, or they could use a central token server to substitute tokens for PAN data at the time of purchase.

Our recommendation for our theoretical merchant is in-house tokenization. An in-house token server will work with existing applications and provide tokens in lieu of credit card numbers. This will remove PAN data from the servers entirely with minimal changes to those few platforms that actually use credit cards: accepting them from customers, authorizing charges, clearing, and settlement – everything else will be fine with a non-sensitive token that matches the format of a real credit card number. We recommend a standalone server over one embedded within the applications, as the merchant will need to share tokens across multiple applications. This makes it easier to segment users and services authorized to generate tokens from those that can actually need real unencrypted credit card numbers.

Diagram 1 lays out the architecture. Here’s the structure:

  1. A customer makes a purchase request. If this is a new customer, they send their credit card information over an SSL connection (which should go without saying). For future purchases, only the transaction request need be submitted.
  2. The application server processes the request. If the credit card is new, it uses the tokenization server’s API to send the value and request a new token.
  3. The tokenization server creates the token and stores it with the encrypted credit card number.
  4. The tokenization server returns the token, which is stored in the application database with the rest of the customer information.
  5. The token is then used throughout the merchant’s environment, instead of the real credit card number.
  6. To complete a payment transaction, the application server sends a request to the transaction server.
  7. The transaction server sends the token to the tokenization server, which returns the credit card number.
  8. The transaction information – including the real credit card number – is sent to the payment processor to complete the transaction.

While encryption could protect credit card data without tokenization, and be implemented in such a way as to minimize changes to UI and database storage to supporting applications, it would require modification of every system that handles credit cards. And a pure encryption solution would require support of key management services to protect encryption keys. The deciding factor against encryption here is the cost of retrofitting system with application layer encryption – especially because several rely on third-party code. The required application changes, changes to operations management and disaster recovery, and broader key management services required would be far more costly and time-consuming. Recoding applications would become the single largest expenditure, outweighing the investment in encryption or token services.

Sure, the goal is compliance and data security, but ultimately any merchant’s buying decision is heavily affected by cost: for acquisition, maintenance, and management. And for any merchant handling credit cards, as the business grows so does the cost of compliance. Likely the ‘best’ choice will be the one that costs the least money, today and in the long term. In terms of relative security, encryption and tokenization are roughly equivalent. There is no significant cost difference between the two, either for acquisition or operation. But there is a significant difference in the costs of implementation and auditing for compliance.

Next up we’ll look at another customer profile for PCI.

Share: