I realize I might be dating myself a bit, but to this day I still miss the short-lived video arcade culture of the 1980’s. Aside from the excitement of playing on “big hardware” that far exceeded my Atari 2600 or C64 back home (still less powerful than the watch on my wrist today), I enjoyed the culture of lining up my quarters or piling around someone hitting some ridiculous level of Tempest.

One thing I didn’t really like was the whole “token” thing. Rather than playing with quarters, some arcades (pioneered by the likes of that other Big Mouse) issued tokens that would only work on their machines. On the upside you would occasionally get 5 tokens for a dollar, but overall it was frustrating as a kid. Years later I realized that tokens were a parental security control – worthless for anything other than playing games in that exact location, they keep the little ones from buying gobs of candy 2 heartbeats after a pile of quarters hits their hands.

With the increasing focus on payment transaction security due to the quantum-entangled forces of breaches and PCI, we are seeing a revitalization of tokenization as a security control. I believe it will become the dominant credit card transaction processing architecture until we finally dump our current plain-text, PAN-based system.

I first encountered the idea a few years ago while talking with a top-tier retailer about database encryption. Rather than trying to encrypt all credit card data in all their databases, they were exploring the possibility of concentrating the numbers in one master database, and then replacing the card numbers with “tokens” in all the other systems. The master database would be highly hardened and encrypted, and keep track of which token matched which credit card. Other systems would send the tokens to the master system for processing, which would then interface with the external transaction processing systems.

By swapping out all the card numbers, they could focus most of their security efforts on one controlled system that’s easier to control. Sure, someone might be able to hack the application logic of some server and kick off an illicit payment, but they’d have to crack the hardened master server to get card numbers for any widespread fraud.

We’ve written about it a little bit in other posts, and I have often recommended it directly to users, but I probably screwed up by not pushing the concept on a wider basis. Tokenization solves far more problems than trying to encrypt in place, and while complex it is still generally easier to implement than alternatives. Well-designed tokens fit the structure of credit card numbers, which may require fewer application changes in distributed systems. The assessment scope for PCI is reduced, since card numbers are only in one location, which can reduce associated costs. From a security standpoint, it allows you to focus more effort on one hardened location. Tokenization also reduces data spillage, since there are far fewer locations which use card numbers, and fewer business units that need them for legitimate functions, such as processing refunds (one of the main reasons to store card numbers in retail environments).

Today alone we were briefed on two different commercial tokenization offerings – one from RSA and First Data Corp, the other from Voltage. The RSA/FDC product is a partnership where RSA provides the encryption/tokenization tech FDC uses in their processing service, while Voltage offers tokenization as an option to their Format Preserving Encryption technology. (Voltage is also partnering with Heartland Payment Systems on the processing side, but that deal uses their encryption offering rather than tokenization).

There are some extremely interesting things you can do with tokenization. For example, with the RSA/FDC offering, the card number is encrypted on collection at the point of sale terminal with the public key of the tokenization service, then sent to the tokenization server which returns a token that still “resembles” a card number (it passes the LUHN check and might even include the same last 4 digits – the rest is random). The real card number is stored in a highly secured database up at the processor (FDC). The token is the stored value on the merchant site, and since it’s paired with the real number on the processor side, can still be used for refunds and such. This particular implementation always requires the original card for new purchases, but only the token for anything else.

Thus the real card number is never stored in the clear (or even encrypted) on the merchant side. There’s really nothing to steal, which eliminates any possibility of a card number breach (according to the Data Breach Triangle). The processor (FDC) is still at risk, so they will need to use a different set of technologies to lock down and encrypt the plain text numbers. The numbers still look like real card numbers, reducing any retrofitting requirements for existing applications and databases, but they’re useless for most forms of fraud. This implementation won’t work for recurring payments and such, which they’ll handle differently.

Over the past year or so I’ve become a firm believer that tokenization is the future of transaction processing – at least until the card companies get their stuff together and design a stronger system. Encryption is only a stop-gap in most organizations, and once you hit the point where you have to start making application changes anyway, go with tokenization.

Even payment processors should be able to expand use of tokenization, relying on encryption to cover the (few) tokenization databases which still need the PAN.

Messing with your transaction systems, especially legacy databases and applications, is never easy. But once you have to crack them open, it’s hard to find a downside to tokenization.

Share: