Securosis

Research

The Five Laws Of Data Masking

Tomorrow I’ll be giving a webcast over at ZDNet (sponsored by Oracle) on the Top 5 Database Security Resolutions for 2008. The resolutions have changed a bit since I first posted about them over here, and I decided to swap in data masking for the last one. I almost pulled it back out after I found out my sponsor (Oracle) just released a data masking product (I try to avoid being too promotional in my webinars), but it’s something I’ve been talking about for a while and it’s too important to pull just because a few people might think I was being biased. We’re up to nearly 600 people registered for the event, making it one of the largest webcasts I’ve done. But enough self-promotion; it’s time to talk about data masking. Data masking started popping up as an issue about 3 years ago. At the time I was covering database security, but client calls were bouncing around between me on the security team and someone over in application development. It’s one of these annoying security issues that crosses organizational boundaries and ends up the responsibility of those will little security experience. It’s an issue that grew organically- first popping up in some audits related to GLBA (a financial services regulation), and now something we see required for PCI and a few other regulations. Data masking is really a bad term for what we’re talking about. We can technically mask data anywhere, but when we use the term data masking we usually mean “test data generation” or “analytical data generation”. It’s the conversion of production data into either test and development data or data for a data warehouse (OLAP). For this post we’ll focus on test data generation, but the same techniques can be used for an OLAP where you want data that represents production data, but still protects the sensitive stuff. And that’s our goal- to take sensitive data from a production system and convert it into non-sensitive data suitable for testing or analysis. We can do this through substitution, transposition, obfuscation, de-coupling, scrambling, hashing, or even encryption. I’m going to quickly eliminate hashing and encryption from the discussion- those techniques are very effective at protecting data, but the result breaks the second rule of data masking- that the data is still representative of the source, without being sensitive. Organizations are increasingly finding that data masking is mandated for regulatory compliance. It’s also an extremely effective way to reduce enterprise risk. Development and test environments are rarely as secure as production, and there’s little reason developers should have access to sensitive data. Analytical systems are often accessed by a wide variety of users, most of whom shouldn’t see sensitive data, with only a fraction of the access and other security controls in transactional systems. With that, and since I get way more hits if I have the “x laws” in the title, here are the Five Laws of Data Masking: Masking must not be reversible. However you mask your data, it should never be possible to use it to retrieve the original sensitive data. The results must be representative of the source data. The reason to mask data instead of just generating random data is that masking allows you to protect sensitive information that still resembles production data for development and testing purposes. This could include geographic distributions, credit card distributions (e.g., leaving the first 4 numbers unchanged, but scrambling the rest), or maintaining human readability of (fake) names and addresses. Referential integrity must be maintained. Your masking solution should maintain referential integrity- if a credit card number is a primary key, and scrambled as part of masking, then all instances of that number linked through key pairs must be scrambled identically. Only mask non-sensitive data if it can be used to recreate sensitive data. It isn’t necessary to mask everything in your database, just those parts that you deem sensitive. But remember, some non-sensitive data can be used to either recreate or tie back to sensitive data. For example, if you scramble a medical ID but the treatment codes for a record could only map back to the original record, you also need to scramble those codes. This is called inference analysis, and your masking should protect against it. Masking must be a repeatable process. One-off masking is not only nearly impossible to maintain, but it’s fairly ineffective. Development/test data needs to represent constantly changing production data as closely as possible. Analytical data may need to be generated daily, or even hourly. If masking isn’t an automated process it’s inefficient, expensive, and ineffective. I know of some organizations that centralize masking and offer it as an internal service to the enterprise. These “laws” are just to start the discussion on masking. In future posts I’ll discuss my recommended data masking process and what features to look for in tools. And if you absolutely can’t wait until I get around to a follow-on post, join me for the webinar on Friday where I’ll dig in a little deeper. Share:

Share:
Read Post

Totally Transparent Research is the embodiment of how we work at Securosis. It’s our core operating philosophy, our research policy, and a specific process. We initially developed it to help maintain objectivity while producing licensed research, but its benefits extend to all aspects of our business.

Going beyond Open Source Research, and a far cry from the traditional syndicated research model, we think it’s the best way to produce independent, objective, quality research.

Here’s how it works:

  • Content is developed ‘live’ on the blog. Primary research is generally released in pieces, as a series of posts, so we can digest and integrate feedback, making the end results much stronger than traditional “ivory tower” research.
  • Comments are enabled for posts. All comments are kept except for spam, personal insults of a clearly inflammatory nature, and completely off-topic content that distracts from the discussion. We welcome comments critical of the work, even if somewhat insulting to the authors. Really.
  • Anyone can comment, and no registration is required. Vendors or consultants with a relevant product or offering must properly identify themselves. While their comments won’t be deleted, the writer/moderator will “call out”, identify, and possibly ridicule vendors who fail to do so.
  • Vendors considering licensing the content are welcome to provide feedback, but it must be posted in the comments - just like everyone else. There is no back channel influence on the research findings or posts.
    Analysts must reply to comments and defend the research position, or agree to modify the content.
  • At the end of the post series, the analyst compiles the posts into a paper, presentation, or other delivery vehicle. Public comments/input factors into the research, where appropriate.
  • If the research is distributed as a paper, significant commenters/contributors are acknowledged in the opening of the report. If they did not post their real names, handles used for comments are listed. Commenters do not retain any rights to the report, but their contributions will be recognized.
  • All primary research will be released under a Creative Commons license. The current license is Non-Commercial, Attribution. The analyst, at their discretion, may add a Derivative Works or Share Alike condition.
  • Securosis primary research does not discuss specific vendors or specific products/offerings, unless used to provide context, contrast or to make a point (which is very very rare).
    Although quotes from published primary research (and published primary research only) may be used in press releases, said quotes may never mention a specific vendor, even if the vendor is mentioned in the source report. Securosis must approve any quote to appear in any vendor marketing collateral.
  • Final primary research will be posted on the blog with open comments.
  • Research will be updated periodically to reflect market realities, based on the discretion of the primary analyst. Updated research will be dated and given a version number.
    For research that cannot be developed using this model, such as complex principles or models that are unsuited for a series of blog posts, the content will be chunked up and posted at or before release of the paper to solicit public feedback, and provide an open venue for comments and criticisms.
  • In rare cases Securosis may write papers outside of the primary research agenda, but only if the end result can be non-biased and valuable to the user community to supplement industry-wide efforts or advances. A “Radically Transparent Research” process will be followed in developing these papers, where absolutely all materials are public at all stages of development, including communications (email, call notes).
    Only the free primary research released on our site can be licensed. We will not accept licensing fees on research we charge users to access.
  • All licensed research will be clearly labeled with the licensees. No licensed research will be released without indicating the sources of licensing fees. Again, there will be no back channel influence. We’re open and transparent about our revenue sources.

In essence, we develop all of our research out in the open, and not only seek public comments, but keep those comments indefinitely as a record of the research creation process. If you believe we are biased or not doing our homework, you can call us out on it and it will be there in the record. Our philosophy involves cracking open the research process, and using our readers to eliminate bias and enhance the quality of the work.

On the back end, here’s how we handle this approach with licensees:

  • Licensees may propose paper topics. The topic may be accepted if it is consistent with the Securosis research agenda and goals, but only if it can be covered without bias and will be valuable to the end user community.
  • Analysts produce research according to their own research agendas, and may offer licensing under the same objectivity requirements.
  • The potential licensee will be provided an outline of our research positions and the potential research product so they can determine if it is likely to meet their objectives.
  • Once the licensee agrees, development of the primary research content begins, following the Totally Transparent Research process as outlined above. At this point, there is no money exchanged.
  • Upon completion of the paper, the licensee will receive a release candidate to determine whether the final result still meets their needs.
  • If the content does not meet their needs, the licensee is not required to pay, and the research will be released without licensing or with alternate licensees.
  • Licensees may host and reuse the content for the length of the license (typically one year). This includes placing the content behind a registration process, posting on white paper networks, or translation into other languages. The research will always be hosted at Securosis for free without registration.

Here is the language we currently place in our research project agreements:

Content will be created independently of LICENSEE with no obligations for payment. Once content is complete, LICENSEE will have a 3 day review period to determine if the content meets corporate objectives. If the content is unsuitable, LICENSEE will not be obligated for any payment and Securosis is free to distribute the whitepaper without branding or with alternate licensees, and will not complete any associated webcasts for the declining LICENSEE. Content licensing, webcasts and payment are contingent on the content being acceptable to LICENSEE. This maintains objectivity while limiting the risk to LICENSEE. Securosis maintains all rights to the content and to include Securosis branding in addition to any licensee branding.

Even this process itself is open to criticism. If you have questions or comments, you can email us or comment on the blog.