Securosis

Research

Our Take On The McAfee Acquisitions

I’ll be honest- it’s been a bit tough to stay up to date on current events in the security world over the past month or so. There’s something about nonstop travel and tight project deadlines that isn’t very conducive to keeping up with the good old RSS feed, even when said browsing is a major part of your job. Not that I’m complaining about being able to pay the bills. Thus I missed Google Chrome, and I didn’t even comment on McAfee’s acquisition of Reconnex (the DLP guys). But the acquisition gods are smiling upon me, and with McAfee’s additional acquisition of Secure Computing I have a second shot to impress you with my wit and market acumen. To start, I mostly agree with Rothman and Shimel. Rather than repeating their coverage, I’ll give you my concise take, and why it matters to you. McAfee clearly wants to move into network security again. SC didn’t have the best of everything, but there’s enough there they can build on. I do think SC has been a bit rudderless for a while, so keep a close eye on what starts coming out in about 6 months to see if they are able to pull together a product vision. McAfee’s been doing a reasonable job on the endpoint, but to hit the growth they want the network is essential. Expect Symantec to make some sort of network move. Let’s be honest: Cisco will mostly cream both these guys in pure network security, but that won’t stop them from trying. They (Symantec and McAfee) actually have some good opportunities here- Cisco still can’t figure out DLP or other non-pure network plays, and with virtualization and re-perimeterization the endpoint boys have some opportunities. Netsec is far from dead, but many of the new directions involve more than a straight network box. I expect we’ll see a passable UTM come out of this, but the real growth (if it’s to be had) will be in other areas. The combination of Reconnex, CipherTrust, and Webwasher will be interesting, but likely take 12-18 months to happen (assuming they decide to move in that direction, which they should). This positions them more directly against Websense, and Symantec will again likely respond with combining DLP with a web gateway since that’s the only bit they are missing. Maybe they’ll snag Palo Alto and some lower-end URL filter. SC is strong in federal. Could be an interesting channel to leverage the SafeBoot encryption product. What does this mean to the average security pro? Not much, to be honest. We’ll see McAfee and Symantec moving more into the network again, likely using email, DLP, and mid-market UTM as entry points. DLP will really continue to heat up once the McAfee acquisitions are complete and they start the real product integration (we’ll see products before then, but we all know real integration happens long after the pretty new product packaging and marketing brochures). I actually have a hard time getting overly excited about the SC deal. It’s good for McAfee, and we’ll see some of those SC products move back into the enterprise market, but there’s nothing truly game changing. The big changes in security will be around data protection/information centric security and virtualization. The Reconnex deal aligns with that, but the SC deal is more product line filler. But you can bet Webwasher, CipherTrust, and Reconnex will combine. If it doesn’t happen within the next year and a half, someone needs to be fired. Share:

Share:
Read Post

Behavioral Monitoring

A number of months ago when Rich released his paper on Database Activity Monitoring, one of the sections was on Alerting. Basically this is the analysis phase, where the collected data stream is analyzed in context of the policies that are to be enforced, and the generation of an alert when a policy is violated. In that section he mentioned the common types of analysis, and one other that is not typically available but makes a valuable addition: Heuristics. I feel this is an important tool for policy enforcement- not just for DAM, but also for DLP, SIM, and other security platforms- so I wanted to elaborate on this topic. When you look at DAM, the functional components are pretty simple: Collect data from one or more sources, analyze data in relation to a policy set, and alert when a policy has been violated. Sometimes data is collected from the network, sometimes from audit logs, and sometimes directly from the database’s in-memory data structures. But regardless of the source, the key pieces of information about who did what are culled from the source, and mapped to the policies, with alerts via email, log file entries, and/or SNMP traps (alerts). All pretty straightforward. So what are heuristics, or ‘behavioral monitoring’? Many policies are intended to detect abnormal activity. But in order to quantify what is abnormal, you first have to understand what is normal. And for the purposes of alerting, just how abnormal does something have to be before it warrants attention? As a simplified example, think about it this way; you could watch all cars passing down a road and write down the speed of the cars as they pass by. At the end of the day, you could take the average vehicle speed and reset the speed limit to that average; that would be a form of behavioral benchmarking. If we then started issuing tickets to passing motorists 10% over or under that average: a behavior-based policy. This is how behavioral monitoring helps with Database Activity Monitoring. Typical policy enforcement in DAM relies on straight comparisons; for example, if user X is performing Y operation, and location is not Z, then generate an alert. Behavioral monitoring builds a profile of activity first, and then compares events not only to the policy, but also to previous events. It is this historical profile that shows what is going on within the database, or what normal network activity against the database looks like, to set the baseline. This can be something as simple as failed login attempts over a 2-hour time period, so we could keep a tally of failed login attempts and then alert if the number is greater than three. But in a more interesting example, we might record the number of rows selected by a by a specific user on a daily basis for a period of a month, as well as an average number of rows selected by all users over the same of a month. In this case we can create a policy to alert if if a single user account selects more that 40% above the group norm, or 100% more than that user’s average selection. Building this profile comes at some expense in terms of processor overhead and storage, and this grows with the number of different behaviors traits to keep track of. However, behavior polices have an advantage in that they help us learn what is normal and what is not. Another advantage: as building the profile is dynamic and ongoing, thus the policy itself requires less maintenance, as it automatically self-adjusts over time as usage of the database evolves. The triggers adapt to changes without alteration of the policy. As with platforms like IDS, email, and web security, maintenance of policies and review of false positives forms the bulk of the administration time required to keep a product operational and useful. Implemented properly, behavior-based monitoring should both cut down on false positives and ease policy maintenance. This approach makes more sense, and provides greater value, when applied to application-level activity and analysis. Certain transaction types create specific behaviors, both per-transaction and across a day’s activity. For example, to detect call center employee misuse of customer databases, where the users have permission to review and update records, automatically constructed user profiles are quite effective for distinguishing legitimate from aberrant activity- just make sure you don’t baseline misbehavior as legitimate! You may be able to take advantage of behavioral monitoring to augment Who/What/When/Where policies already in place. There are a number of different products which offer this technology, with varying degrees of effectiveness. And for the more technically inclined, there are many good references: public white papers, university theses, patents, and patent submissions. If you are interested send me email, and I will provide specific references. Share:

Share:
Read Post

Totally Transparent Research is the embodiment of how we work at Securosis. It’s our core operating philosophy, our research policy, and a specific process. We initially developed it to help maintain objectivity while producing licensed research, but its benefits extend to all aspects of our business.

Going beyond Open Source Research, and a far cry from the traditional syndicated research model, we think it’s the best way to produce independent, objective, quality research.

Here’s how it works:

  • Content is developed ‘live’ on the blog. Primary research is generally released in pieces, as a series of posts, so we can digest and integrate feedback, making the end results much stronger than traditional “ivory tower” research.
  • Comments are enabled for posts. All comments are kept except for spam, personal insults of a clearly inflammatory nature, and completely off-topic content that distracts from the discussion. We welcome comments critical of the work, even if somewhat insulting to the authors. Really.
  • Anyone can comment, and no registration is required. Vendors or consultants with a relevant product or offering must properly identify themselves. While their comments won’t be deleted, the writer/moderator will “call out”, identify, and possibly ridicule vendors who fail to do so.
  • Vendors considering licensing the content are welcome to provide feedback, but it must be posted in the comments - just like everyone else. There is no back channel influence on the research findings or posts.
    Analysts must reply to comments and defend the research position, or agree to modify the content.
  • At the end of the post series, the analyst compiles the posts into a paper, presentation, or other delivery vehicle. Public comments/input factors into the research, where appropriate.
  • If the research is distributed as a paper, significant commenters/contributors are acknowledged in the opening of the report. If they did not post their real names, handles used for comments are listed. Commenters do not retain any rights to the report, but their contributions will be recognized.
  • All primary research will be released under a Creative Commons license. The current license is Non-Commercial, Attribution. The analyst, at their discretion, may add a Derivative Works or Share Alike condition.
  • Securosis primary research does not discuss specific vendors or specific products/offerings, unless used to provide context, contrast or to make a point (which is very very rare).
    Although quotes from published primary research (and published primary research only) may be used in press releases, said quotes may never mention a specific vendor, even if the vendor is mentioned in the source report. Securosis must approve any quote to appear in any vendor marketing collateral.
  • Final primary research will be posted on the blog with open comments.
  • Research will be updated periodically to reflect market realities, based on the discretion of the primary analyst. Updated research will be dated and given a version number.
    For research that cannot be developed using this model, such as complex principles or models that are unsuited for a series of blog posts, the content will be chunked up and posted at or before release of the paper to solicit public feedback, and provide an open venue for comments and criticisms.
  • In rare cases Securosis may write papers outside of the primary research agenda, but only if the end result can be non-biased and valuable to the user community to supplement industry-wide efforts or advances. A “Radically Transparent Research” process will be followed in developing these papers, where absolutely all materials are public at all stages of development, including communications (email, call notes).
    Only the free primary research released on our site can be licensed. We will not accept licensing fees on research we charge users to access.
  • All licensed research will be clearly labeled with the licensees. No licensed research will be released without indicating the sources of licensing fees. Again, there will be no back channel influence. We’re open and transparent about our revenue sources.

In essence, we develop all of our research out in the open, and not only seek public comments, but keep those comments indefinitely as a record of the research creation process. If you believe we are biased or not doing our homework, you can call us out on it and it will be there in the record. Our philosophy involves cracking open the research process, and using our readers to eliminate bias and enhance the quality of the work.

On the back end, here’s how we handle this approach with licensees:

  • Licensees may propose paper topics. The topic may be accepted if it is consistent with the Securosis research agenda and goals, but only if it can be covered without bias and will be valuable to the end user community.
  • Analysts produce research according to their own research agendas, and may offer licensing under the same objectivity requirements.
  • The potential licensee will be provided an outline of our research positions and the potential research product so they can determine if it is likely to meet their objectives.
  • Once the licensee agrees, development of the primary research content begins, following the Totally Transparent Research process as outlined above. At this point, there is no money exchanged.
  • Upon completion of the paper, the licensee will receive a release candidate to determine whether the final result still meets their needs.
  • If the content does not meet their needs, the licensee is not required to pay, and the research will be released without licensing or with alternate licensees.
  • Licensees may host and reuse the content for the length of the license (typically one year). This includes placing the content behind a registration process, posting on white paper networks, or translation into other languages. The research will always be hosted at Securosis for free without registration.

Here is the language we currently place in our research project agreements:

Content will be created independently of LICENSEE with no obligations for payment. Once content is complete, LICENSEE will have a 3 day review period to determine if the content meets corporate objectives. If the content is unsuitable, LICENSEE will not be obligated for any payment and Securosis is free to distribute the whitepaper without branding or with alternate licensees, and will not complete any associated webcasts for the declining LICENSEE. Content licensing, webcasts and payment are contingent on the content being acceptable to LICENSEE. This maintains objectivity while limiting the risk to LICENSEE. Securosis maintains all rights to the content and to include Securosis branding in addition to any licensee branding.

Even this process itself is open to criticism. If you have questions or comments, you can email us or comment on the blog.