Securosis

Research

Brian Krebs: Ultimate Spam Filter

First he exposes the Russian Business Network and forces them to go underground, now he nearly single-handedly stops 2/3rds of spam. Most tech journalists, myself included merely comment on the latest product drivel or market trends. Brian is one of the only investigative journalists actually looking at the roots of cybercrime and fraud. On Tuesday, he contacted the major ISPs hosting McColo– a notorious hosting service whose clients include a long roster of cybercriminals. At least one of those ISPs pulled the plug, and until McColo’s clients are able to relocate we should enjoy some relative quiet. Congrats Brian, awesome work. This also shows the only way we can solve some of these problems- through proactive investigation and offense. We can’t possibly win if all we do is run around and try and block things on our side. Share:

Share:
Read Post

Comments on Database Media Protection

Rich posted an article on database and media encryption (aka Data at Rest) earlier this week, discussing the major alternatives for keeping database media safe. Prior to posting it, he asked me to preview the contents for accuracy, which I did, and I think Rich covers the major textbook approaches one needs to consider. I did want to add a little color to this discussion in terms of threat models and motivation- regarding why these options should be considered, as well as some additional practical considerations in the use and selection of encryption for data at rest. Media Encryption: Typically the motivation behind media encryption is to thwart people from stealing sensitive information in the event that the media is lost or stolen, and falls into the wrong hands. If your backup tape falls off the back of a truck, for example, it cannot be read and the information sold. But there are a couple other reasons as well. Tampering with snapshots or media is another problem encryption helps address, as both media and file encryption resist tampering- both in long-term media storage, and file/folder level encryption for short-term snapshots. If a malicious insider can alter the most recent backups, and force some form of failure to the system, the altered data would be restored. As this becomes the master record of events, the likelihood of catching and discovering this attack would be very difficult. Encrypted backups with proper separation of duties makes this at least difficult, and hopefully impossible. In a similar scenario, if someone was to gain access to backups, or the appliance that encrypts and performs key management, they could perform a type of denial of service attack. This might be to erase some piece of history that was recorded in the database, or as leverage to blackmail a company. Regardless of encryption method, redundancy in key management, encryption software/hardware, and backups becomes necessary; otherwise you have simply swapped one security threat for another. External File or Folder Encryption. If you rely on smaller regional database servers, in bank branch offices for example, theft of the physical device is something to consider. In secured data centers, or where large hardware is used, the odds of this happening are slim. In the case of servers sitting in a rack in an office closet, this is not so rare. This stuff is not stored in a vault, and much in the same way file and folder encryption helps with stolen laptops, it can also help if someone walks off with a server. How and where to store keys in this type of environment needs to be considered as well, for both operational consistency and security. Native Database Object Encryption: This is becoming the most common method for encrypting database data, and while it might sound obvious to some, there are historical reasons why this trend is only recently becoming the standard. The recent popularity is because database encryption tends to work seamlessly with most existing application processes and it usually (now) performs quite well, thanks to optimizations by database vendors. As it becomes more common, the attacks will also become more common. Native database encryption helps address a couple specific issues. The first is that archived data is already in an encrypted state, and therefore backups are protected against privacy or tampering problems. Second, encryption helps enforce separation of duties provided that the access controls, group privileges, and roles are properly set up. However, there are a number of more subtle attacks on the database that need to be considered. How objects and structures are named, and how they are used, and other unencrypted columns, can all ‘leak’ information. While the primary sensitive data is encrypted, if the structures or naming conventions are poorly designed, or compound columns are used, information may be unintentionally available by inference. Also, stored procedures or service accounts that have permissions to examine these encrypted columns can be used to bypass authorization checks and access the data, so both direct and indirect access rights need to be periodically reviewed. In some rare cases I have seen read & write access to encrypted columns left open, as the admin felt that if the data was protected it was safe, but overwriting the column with zeros proved otherwise. Finally, some of the memory scanning database monitoring technologies have access to cached data in its unencrypted state, so make sure caching does not leave a hole you thought was closed. Hopefully this went a little beyond specific tools and their usage, and provided some food for thought. You will need to consider how encryption alters your disaster recovery strategy, both with the backups, as well as with encryption software/hardware and key management infrastructure. It affects the whole data eco-system, so you need to consider all aspects of the data life-cycle this touches. And some of you may consider the threats I raised above as far-fetched, but if you think like a criminal or watch the news often enough, you will see examples of these sorts of attacks from time to time. Share:

Share:
Read Post

Healthcare In The Cloud

Google is launching a cooperative program between Google and Medicare of Arizona. They are teaming up to put patient & health care records onto Google servers so it can be shared with doctors, labs and pharmacies. Arizona seniors will be pioneers in a Medicare program that encourages patients to store their medical histories on Google or other commercial Web sites as part of a government effort to streamline and improve health care. The federal agency that oversees Medicare selected Arizona and Utah for a pilot program that invites patients to store their health records on the Internet with Google or one of three other vendors. From Google & Medicare’s standpoint, this seems like a great way to reduce risk and liability while creating new revenue models. Google will be able to charge for some add-on advertisement services, and possibly data for BI as well. It appears that to use the service, you need to provide some consent, but it is unclear from the wording in the privacy policy if that means by default the data can be used or shared with third parties; time will tell. It does appears that Google does not assume HIPPA obligations because they are not a health care provider. And because of the voluntary nature of the program, it would be hard to get any satisfaction should the data be leaked and damages result. The same may be true for Medicare, because if they are not storing the patient data, there is a grey area of applicability for measures like CA-1386 and HIPPA as well. As Medicare is not outsourcing record storage, unlike other SaaS offerings, they may be able to shrug off the regulatory burden. Is it just me, or does this kind of look like Facebook for medical records? Share:

Share:
Read Post
dinosaur-sidebar

Totally Transparent Research is the embodiment of how we work at Securosis. It’s our core operating philosophy, our research policy, and a specific process. We initially developed it to help maintain objectivity while producing licensed research, but its benefits extend to all aspects of our business.

Going beyond Open Source Research, and a far cry from the traditional syndicated research model, we think it’s the best way to produce independent, objective, quality research.

Here’s how it works:

  • Content is developed ‘live’ on the blog. Primary research is generally released in pieces, as a series of posts, so we can digest and integrate feedback, making the end results much stronger than traditional “ivory tower” research.
  • Comments are enabled for posts. All comments are kept except for spam, personal insults of a clearly inflammatory nature, and completely off-topic content that distracts from the discussion. We welcome comments critical of the work, even if somewhat insulting to the authors. Really.
  • Anyone can comment, and no registration is required. Vendors or consultants with a relevant product or offering must properly identify themselves. While their comments won’t be deleted, the writer/moderator will “call out”, identify, and possibly ridicule vendors who fail to do so.
  • Vendors considering licensing the content are welcome to provide feedback, but it must be posted in the comments - just like everyone else. There is no back channel influence on the research findings or posts.
    Analysts must reply to comments and defend the research position, or agree to modify the content.
  • At the end of the post series, the analyst compiles the posts into a paper, presentation, or other delivery vehicle. Public comments/input factors into the research, where appropriate.
  • If the research is distributed as a paper, significant commenters/contributors are acknowledged in the opening of the report. If they did not post their real names, handles used for comments are listed. Commenters do not retain any rights to the report, but their contributions will be recognized.
  • All primary research will be released under a Creative Commons license. The current license is Non-Commercial, Attribution. The analyst, at their discretion, may add a Derivative Works or Share Alike condition.
  • Securosis primary research does not discuss specific vendors or specific products/offerings, unless used to provide context, contrast or to make a point (which is very very rare).
    Although quotes from published primary research (and published primary research only) may be used in press releases, said quotes may never mention a specific vendor, even if the vendor is mentioned in the source report. Securosis must approve any quote to appear in any vendor marketing collateral.
  • Final primary research will be posted on the blog with open comments.
  • Research will be updated periodically to reflect market realities, based on the discretion of the primary analyst. Updated research will be dated and given a version number.
    For research that cannot be developed using this model, such as complex principles or models that are unsuited for a series of blog posts, the content will be chunked up and posted at or before release of the paper to solicit public feedback, and provide an open venue for comments and criticisms.
  • In rare cases Securosis may write papers outside of the primary research agenda, but only if the end result can be non-biased and valuable to the user community to supplement industry-wide efforts or advances. A “Radically Transparent Research” process will be followed in developing these papers, where absolutely all materials are public at all stages of development, including communications (email, call notes).
    Only the free primary research released on our site can be licensed. We will not accept licensing fees on research we charge users to access.
  • All licensed research will be clearly labeled with the licensees. No licensed research will be released without indicating the sources of licensing fees. Again, there will be no back channel influence. We’re open and transparent about our revenue sources.

In essence, we develop all of our research out in the open, and not only seek public comments, but keep those comments indefinitely as a record of the research creation process. If you believe we are biased or not doing our homework, you can call us out on it and it will be there in the record. Our philosophy involves cracking open the research process, and using our readers to eliminate bias and enhance the quality of the work.

On the back end, here’s how we handle this approach with licensees:

  • Licensees may propose paper topics. The topic may be accepted if it is consistent with the Securosis research agenda and goals, but only if it can be covered without bias and will be valuable to the end user community.
  • Analysts produce research according to their own research agendas, and may offer licensing under the same objectivity requirements.
  • The potential licensee will be provided an outline of our research positions and the potential research product so they can determine if it is likely to meet their objectives.
  • Once the licensee agrees, development of the primary research content begins, following the Totally Transparent Research process as outlined above. At this point, there is no money exchanged.
  • Upon completion of the paper, the licensee will receive a release candidate to determine whether the final result still meets their needs.
  • If the content does not meet their needs, the licensee is not required to pay, and the research will be released without licensing or with alternate licensees.
  • Licensees may host and reuse the content for the length of the license (typically one year). This includes placing the content behind a registration process, posting on white paper networks, or translation into other languages. The research will always be hosted at Securosis for free without registration.

Here is the language we currently place in our research project agreements:

Content will be created independently of LICENSEE with no obligations for payment. Once content is complete, LICENSEE will have a 3 day review period to determine if the content meets corporate objectives. If the content is unsuitable, LICENSEE will not be obligated for any payment and Securosis is free to distribute the whitepaper without branding or with alternate licensees, and will not complete any associated webcasts for the declining LICENSEE. Content licensing, webcasts and payment are contingent on the content being acceptable to LICENSEE. This maintains objectivity while limiting the risk to LICENSEE. Securosis maintains all rights to the content and to include Securosis branding in addition to any licensee branding.

Even this process itself is open to criticism. If you have questions or comments, you can email us or comment on the blog.