Building a Web Application Security Program, Part 8: Putting It All Together
‘Whew! This is our final post in this series on Building a Web Application Security Program (Part 1, Part 2, Part 3, Part 4, Part 5, Part 6, Part 7), and it’s time to put all the pieces together. Here are our guidelines for designing a program that meets the needs of your particular organization. Web application security is not a “one size fits all” problem. The risks, size, and complexity of the applications differ, the level of security awareness among team members varies, and most importantly the goals of each organization are different. In order to offer practical advice, we needed to approach program development in terms of typical goals. We picked three use cases to represent common challenges organizations face with web app security, and will address those use cases with appropriate program models. We discuss a mid-sized firm tackling a compliance mandate for the first time, a large enterprise looking to improve security across customer-facing applications, and a mid-to-large organization dealing with security for internal applications. Each perspective has its own drivers and assumptions, and in each scenario different security measures are already in place, so the direction of each program will be different. Since we’ve been posting this over a series of weeks, before you dig in to this post we recommend you review Part 4: The Web Application Security Lifecycle which talks about all tools in all phases. First we describe the environment for each case, then overall strategy and specific recommendations. Large Enterprise with Customer Facing Web Applications For our first scenario, let’s consider a large enterprise with multiple customer-facing web applications. These applications evolved to offer core business functions and are a principal contact point with customers, employees, and business partners. Primary business drivers for security are fraud reduction, regulatory compliance, and service reliability as tangible incentives. Secondary factors are breach preparedness, reputation preservation, and asset protection secondary – all considerations for security spending. The question is not whether these applications need to be secured, but how. Most enterprises have a body of code with questionable security, and let’s be totally honest here- these issues are flaws in your code. No single off-the-shelf product is going to magically make your application secure, so you invest not only in third-party security products, but also in improvements to your own development process which improve the product with each new release. We assume our fictitious enterprise has an existing security program and the development team has some degree of maturity in their understanding of security issues, but how best to address problems is up for debate. The company will already have a ‘security guy’ in place, and while security is this guy’s or gal’s job, the development organization is not tasked with security assessments and problem identification. Your typical CISO comes from a network security background, lacks a secure code development background, and is not part of this effort. We find their security program includes vulnerability assessment tools, and they have conducted a review of the code for typical SQL injection and buffer overflow attacks. Overall, security is a combination of a couple third-party products and the security guy pointing out security flaws which are patched in upcoming release cycles. Recommendations: The strategy is to include security within the basic development process, shifting the investment from external products to internal products and employee training. Tools are selected and purchased to address particular deficiencies in team skill or organizational processes. Some external products are retained to shield applications during patching efforts. Training, Education, and Process Improvements: The area where we expect to see the most improvement is the skill and awareness of the web application development team. OWASP’s top flaws and other sources point out issues that can be addressed by proper coding and testing … provided the team knows what to look for. Training helps staff find errors and problems during code review, and iteratively reduces flaws through the development cycle. The development staff can focus on software security and not rely on one or two individuals for security analysis. Secure SDLC: Knowing what to do is one thing, but actually doing it is something else. There must be an incentive or requirement for development to code security into the product, assurance to test for compliance, and product management to set the standards and requirements. Otherwise security issues get pushed to the side while features and functions are implemented. Security needs to be part of the product specification, and each phase of the development process should provide verification that the specification is being met through assurance testing. This means building security testing into the development process and QA test scenarios, as well as re-testing released code. Trained development staff can provide code analysis and develop test scripts for verification, but additional tools to automate and support these efforts are necessary, as we will discuss below. Heritage Applications: Have a plan to address legacy code. One of the more daunting aspects for the enterprise is how to address existing code, which is likely to have security problems. There are several possible approaches for addressing this, but the basic steps are 1) identification of problems in the code, 2) prioritization on what to fix, and 3) planning how to fix individual issues. Common methods of addressing vulnerabilities include 1) rewriting segments of code, 2) method encapsulation, 3) temporary shielding by WAF (“secure & patch”), 4) moving SQL processing & validation into databases, 5) discontinuing use of insecure features, and 6) introduction of validation code within the execution path. We recommend static source code analysis or dynamic program analysis tools for the initial identification step. These tools are cost-effective and suitable for scanning large bodies of code to locate common risks and programming errors. They detect and prioritize issues, and reduce human error associated with tedious manual scanning by internal or external parties. Analysis tools also help educate staff about issues with certain languages and common programming patterns. The resulting arguments over what to do with 16k insecure occurrences