Securosis

Research

We Know How Breaches Happen

I first started tracking data breaches back in December of 2000 when I received my very first breach notification email, from Egghead Software. When Egghead wen bankrupt in 2001 and was acquired by Amazon, rather than assuming the breach caused the bankruptcy, I did some additional research and learned they were on a downward spiral long before their little security incident. This broke with the conventional wisdom floating around the security rubber-chicken circuit at the time, and was a fine example of the differences between correlation and causation. Since then I’ve kept trying to translate what little breach material we’ve been able to get our collective hands on into as accurate a picture as possible on the real state of security. We don’t really have a lot to work with, despite the heroic efforts of the Open Security Foundation Data Loss Database (for a long time the only source on breach statistics). As with the rest of us, the Data Loss DB is completely reliant on public breach disclosures. Thanks to California S.B. 1386 and the mishmash of breach notification laws that have developed since 2005, we have a lot more information than we used to, but anyone in the security industry knows only a portion of breaches are reported (despite notification laws), and we often don’t get any details of how the intrusions occurred. The problem with the Data Loss DB is that it’s based on incomplete information. They do their best, but more often than not we lack the real meat needed to make appropriate security and risk decisions. For example, we’ve seen plenty of vendor press releases on how lost laptops, backup tapes, and other media are the biggest source of data breaches. In reality, lost laptops and media are merely the greatest source of reported potential exposures. As I’ve talked about before, there is little or no correlation between these lost devices and any actual fraud. All those stats mean is a physical thing was lost or stolen… no more, no less, unless we find a case where we can correlate a loss with actual fraud. On the research side I try to compensate for the statistics problem by taking more of a case study approach, at best I can using public resources. Even with the limited information released, as time passes we tend to dig up more and more details about breaches, especially once cases make it into court. That’s how we know, for example, that both CardSystems and Heartland Payment Systems were breached (5 years apart) using SQL injection against a web application (the xp_cmdshell command in a poorly configured version of SQL Server, to be specific). In the past year or two we’ve gained some additional data sources, most notably the Verizon Data Breach Investigations Report which provides real, anonymized data regarding breaches. It’s limited in that it only reflects those incidents where Verizon participated in the investigation, and by the standardized information they collected, but it starts to give us better insight beyond public breach reports. Yet we still only have a fraction of the information we need to make appropriate risk management decisions. Even after 20 years in the security world (if you count my physical security work), I’m still astounded that the bad guys share more real information on means and methods than we do. We are thus extremely limited in assessing macro trends in security breaches. We’re forced to use far more anecdotal information than a skeptic like myself is comfortable with. We don’t even have a standard for assessing breach costs (as I’ve proposed, never mind more accurate crime and investigative statistics that could help craft our prioritization of security defenses. Seriously – decades into the practice of security we don’t have any fracking idea if forcing users to change passwords every 90 days provides more benefit than burden. All that said, we can’t sit on our asses and wait for the data. As unscientific as it may be, we still need to decide which security controls to apply where and when. In the past couple weeks we’ve seen enough information emerging that I believe we now have a good idea of two major methods of attack: As we discussed here on the blog, SQL injection via web applications is one of the top attack vectors identified in recent breaches. These attacks are not only against transaction processing systems, but are also used to gain a toehold on internal networks to execute more invasive attacks. Brian Krebs has identified another major attack vector, where malware is installed on insecure consumer and business PCs, then used to gather information to facilitate illicit account transfers. I’ve seen additional reports that suggest this is also a major form of attack. I’d love to back these with better statistics, but until those are available we have to rely on a mix of public disclosure and anecdotal information. We hear rumors of other vectors, such as customized malware (to avoid AV filters) and the ever-present-and-all-powerful insider threat, but there isn’t enough to validate those as a major trend quite yet. If we look across all our sources, we see a consistent picture emerging. The vast majority of cybercrime still seems to take advantage of known vulnerabilities that are can be addressed using common practices. The Verizon report certainly calls out unpatched systems, configuration errors, and default passwords as the most common breach sources. While we can’t state with complete certainty that patching systems, blocking SQL injection, removing default passwords, and enforcing secure configurations will prevent most breaches, the information we have does indicate that’s a reasonable direction. Combine that with following the Data Breach Triangle by reducing use of sensitive data (and using something like DLP to find it), and tightening up egress filtering on transaction processing networks and other sensitive data locations, and you are probably in pretty good shape. For financial institutions struggling with their clients being breached, they can add out-of-band transaction verification (phone calls or even automated text messages),

Share:
Read Post
dinosaur-sidebar

Totally Transparent Research is the embodiment of how we work at Securosis. It’s our core operating philosophy, our research policy, and a specific process. We initially developed it to help maintain objectivity while producing licensed research, but its benefits extend to all aspects of our business.

Going beyond Open Source Research, and a far cry from the traditional syndicated research model, we think it’s the best way to produce independent, objective, quality research.

Here’s how it works:

  • Content is developed ‘live’ on the blog. Primary research is generally released in pieces, as a series of posts, so we can digest and integrate feedback, making the end results much stronger than traditional “ivory tower” research.
  • Comments are enabled for posts. All comments are kept except for spam, personal insults of a clearly inflammatory nature, and completely off-topic content that distracts from the discussion. We welcome comments critical of the work, even if somewhat insulting to the authors. Really.
  • Anyone can comment, and no registration is required. Vendors or consultants with a relevant product or offering must properly identify themselves. While their comments won’t be deleted, the writer/moderator will “call out”, identify, and possibly ridicule vendors who fail to do so.
  • Vendors considering licensing the content are welcome to provide feedback, but it must be posted in the comments - just like everyone else. There is no back channel influence on the research findings or posts.
    Analysts must reply to comments and defend the research position, or agree to modify the content.
  • At the end of the post series, the analyst compiles the posts into a paper, presentation, or other delivery vehicle. Public comments/input factors into the research, where appropriate.
  • If the research is distributed as a paper, significant commenters/contributors are acknowledged in the opening of the report. If they did not post their real names, handles used for comments are listed. Commenters do not retain any rights to the report, but their contributions will be recognized.
  • All primary research will be released under a Creative Commons license. The current license is Non-Commercial, Attribution. The analyst, at their discretion, may add a Derivative Works or Share Alike condition.
  • Securosis primary research does not discuss specific vendors or specific products/offerings, unless used to provide context, contrast or to make a point (which is very very rare).
    Although quotes from published primary research (and published primary research only) may be used in press releases, said quotes may never mention a specific vendor, even if the vendor is mentioned in the source report. Securosis must approve any quote to appear in any vendor marketing collateral.
  • Final primary research will be posted on the blog with open comments.
  • Research will be updated periodically to reflect market realities, based on the discretion of the primary analyst. Updated research will be dated and given a version number.
    For research that cannot be developed using this model, such as complex principles or models that are unsuited for a series of blog posts, the content will be chunked up and posted at or before release of the paper to solicit public feedback, and provide an open venue for comments and criticisms.
  • In rare cases Securosis may write papers outside of the primary research agenda, but only if the end result can be non-biased and valuable to the user community to supplement industry-wide efforts or advances. A “Radically Transparent Research” process will be followed in developing these papers, where absolutely all materials are public at all stages of development, including communications (email, call notes).
    Only the free primary research released on our site can be licensed. We will not accept licensing fees on research we charge users to access.
  • All licensed research will be clearly labeled with the licensees. No licensed research will be released without indicating the sources of licensing fees. Again, there will be no back channel influence. We’re open and transparent about our revenue sources.

In essence, we develop all of our research out in the open, and not only seek public comments, but keep those comments indefinitely as a record of the research creation process. If you believe we are biased or not doing our homework, you can call us out on it and it will be there in the record. Our philosophy involves cracking open the research process, and using our readers to eliminate bias and enhance the quality of the work.

On the back end, here’s how we handle this approach with licensees:

  • Licensees may propose paper topics. The topic may be accepted if it is consistent with the Securosis research agenda and goals, but only if it can be covered without bias and will be valuable to the end user community.
  • Analysts produce research according to their own research agendas, and may offer licensing under the same objectivity requirements.
  • The potential licensee will be provided an outline of our research positions and the potential research product so they can determine if it is likely to meet their objectives.
  • Once the licensee agrees, development of the primary research content begins, following the Totally Transparent Research process as outlined above. At this point, there is no money exchanged.
  • Upon completion of the paper, the licensee will receive a release candidate to determine whether the final result still meets their needs.
  • If the content does not meet their needs, the licensee is not required to pay, and the research will be released without licensing or with alternate licensees.
  • Licensees may host and reuse the content for the length of the license (typically one year). This includes placing the content behind a registration process, posting on white paper networks, or translation into other languages. The research will always be hosted at Securosis for free without registration.

Here is the language we currently place in our research project agreements:

Content will be created independently of LICENSEE with no obligations for payment. Once content is complete, LICENSEE will have a 3 day review period to determine if the content meets corporate objectives. If the content is unsuitable, LICENSEE will not be obligated for any payment and Securosis is free to distribute the whitepaper without branding or with alternate licensees, and will not complete any associated webcasts for the declining LICENSEE. Content licensing, webcasts and payment are contingent on the content being acceptable to LICENSEE. This maintains objectivity while limiting the risk to LICENSEE. Securosis maintains all rights to the content and to include Securosis branding in addition to any licensee branding.

Even this process itself is open to criticism. If you have questions or comments, you can email us or comment on the blog.