Securosis

Research

Cloud Data Security: Use (Rough Cut)

In our last post in this series, we covered the cloud implications of the Store phase of Data Security Cycle (our first post was on the Create phase). In this post we’ll move on to the Use phase. Please remember we are only covering technologies at a high level in this series – we will run a second series on detailed technical implementations of data security in the cloud a little later. Definition Use includes the controls that apply when the user is interacting with the data – either via a cloud-based application, or the endpoint accessing the cloud service (e.g., a client/cloud application, direct storage interaction, and so on). Although we primarily focus on cloud-specific controls, we also cover local data security controls that protect cloud data once it moves back into the enterprise. These are controls for the point of use – we will cover additional network based controls in the next phase. Users interact with cloud data in three ways: Web-based applications, such as most SaaS applications. Client applications, such as local backup tools that store data in the cloud. Direct/abstracted access, such as a local folder synchronized with cloud storage (e.g., Dropbox), or VPN access to a cloud-based server. Cloud data may also be accessed by other back-end servers and applications, but the usage model is essentially the same (web, dedicated application, direct access, or an abstracted service). Steps and Controls Control Structured/Application Unstructured Activity Monitoring and Enforcement Database Activity Monitoring Application Activity Monitoring Endpoint Activity Monitoring File Activity Monitoring Portable Device Control Endpoint DLP/CMP Cloud-Client Logs Rights Management Label Security Enterprise DRM Logical Controls Application Logic Row Level Security None Application Security see Application Security Domain section Activity Monitoring and Enforcement Activity Monitoring and Enforcement includes advanced techniques for capturing all data access and usage activity in real or near-real time, often with preventative capabilities to stop policy violations. Although activity monitoring controls may use log files, they typically include their own collection methods or agents for deeper activity details and more rapid monitoring. Activity monitoring tools also include policy-based alerting and blocking/enforcement that log management tools lack. None of the controls in this category are cloud specific, but we have attempted to show how they can be adapted to the cloud. These first controls integrate directly with the cloud infrastructure: Database Activity Monitoring (DAM): Monitoring all database activity, including all SQL activity. Can be performed through network sniffing of database traffic, agents installed on the server, or external monitoring, typically of transaction logs. Many tools combine monitoring techniques, and network-only monitoring is generally not recommended. DAM tools are managed externally to the database to provide separation of duties from database administrators (DBAs). All DBA activity can be monitored without interfering with their ability to perform job functions. Tools can alert on policy violations, and some tools can block certain activity. Current DAM tools are not cloud specific, and thus are only compatible with environments where the tool can either sniff all network database access (possible in some IaaS deployments, or if provided by the cloud service), or where a compatible monitoring agent can be installed in the database instance. Application Activity Monitoring: Similar to Database Activity Monitoring, but at the application level. As with DAM, tools can use network monitoring or local agents, and can alert and sometimes block on policy violations. Web Application Firewalls are commonly used for monitoring web application activity, but cloud deployment options are limited. Some SaaS or PaaS providers may offer real time activity monitoring, but log files or dashboards are more common. If you have direct access to your cloud-based logs, you can use a near real-time log analysis tool and build your own alerting policies. File Activity Monitoring: Monitoring access and use of files in enterprise storage. Although there are no cloud specific tools available, these tools may be deployable for cloud storage that uses (or presents an abstracted version of) standard file access protocols. Gives an enterprise the ability to audit all file access and generate reports (which may sometimes aid compliance reporting). Capable of independently monitoring even administrator access and can alert on policy violations. The next three tools are endpoint data security tools that are not cloud specific, but may still be useful in organizations that manage endpoints: Endpoint Activity Monitoring: Primarily a traditional data security tool, although it can be used to track user interactions with cloud services. Watching all user activity on a workstation or server. Includes monitoring of application activity; network activity; storage/file system activity; and system interactions such as cut and paste, mouse clicks, application launches, etc. Provides deeper monitoring than endpoint DLP/CMF tools that focus only on content that matches policies. Capable of blocking activities such as pasting content from a cloud storage repository into an instant message. Extremely useful for auditing administrator activity on servers, assuming you can install the agent. An example of cloud usage would be deploying activity monitoring agents on all endpoints in a customer call center that accesses a SaaS for user support. Portable Device Control: Another traditional data security tool with limited cloud applicability, used to restrict access of, or file transfers to, portable storage such as USB drives and DVD burners. For cloud security purposes, we only include tools that either track and enforce policies based on data originating from a cloud application or storage, or are capable of enforcing policies based on data labels provided by that cloud storage or application. Portable device control is also capable of allowing access but auditing file transfers and sending that information to a central management server. Some tools integrate with encryption to provide dynamic encryption of content passed to portable storage. Will eventually be integrated into endpoint DLP/CMF tools that can make more granular decisions based on the content, rather than blanket policies that apply to all data. Some DLP/CMF tools already include this capability. Endpoint DLP: Endpoint Data Loss Prevention/Content Monitoring and Filtering tools that monitor and restrict usage of data through content

Share:
Read Post

Friday Summary – September 18, 2009

Last week, a friend loaned me his copy of Emergency, by Neil Strauss, and I couldn’t put it down. It’s a non-fiction book about the author’s slow transformation from wussy city dweller to full-on survival and disaster expert. And I mean full on; we’re talking everything from normal disaster preparedness, to extensive training in weapons, wilderness and urban survival, developing escape routes from his home to other countries, planting food and fuel caches, and gaining dual citizenship… “just in case”. There’s even a bit with a goat, but not in the humorous/deviant way. I’ve never considered myself a survivalist, although I’ve had extensive survival training and experience as part of my various activities. When you tend to run towards disasters, or engage in high risk sports, it’s only prudent to get a little extra training and keep a few spare bags of gear and supplies around. After I got back from helping out with the Hurricane Katrina response I went through a bit of a freak out moment when I realized all my disaster plans were no longer effective. When I was single in Boulder I didn’t really have to worry much – as a member of the local response infrastructure, I wouldn’t be sitting at home if anything serious happened. I kept the usual 3-day supply of food and water, not that I expected to need it (since I’d be in the field), and my camping/rescue gear would take care of the rest. I lived well above the flood-line, and only had to grab a few personal items and papers in case of a fire. By the time I deployed to Katrina I was living in a different state with a wife (well, almost, at the time), pets, and an extended family who weren’t prepared themselves. The biggest change of all was that I was no longer part of the local response infrastructure – losing access to all of the resources I’d grown used to having available. The only agency I still worked for was based hundreds of miles away in Denver. Oops. Needless to say the complexities of planning for a family with children, pets, and in-laws is far different than holing up in the mountains for a few days. Seriously, do you know how hard it is to plan on bugging out with cats who don’t get along? (Yes, of course I’m taking them – I care more about my cats than I do about most people). I still don’t feel fully prepared, although the range of disasters we face in Phoenix is smaller than Colorado. I fully recognize the odds of me ever needing any of my disaster plans are slim to none, but I’ve been involved in far too many real situations to think the effort and costs aren’t worth it. Nearly all of the corporate disaster planning I’ve seen is absolute garbage (IT or otherwise). The drills are scripted, the plans fatally flawed, and the people running them are idiots who took a 2 day class and have no practical experience. If you have a plan that hasn’t been practiced under realistic conditions on a regular basis, there’s no chance it will work. Oh – and most of the H1N1 advice out there is rubbish. Just tell sick people to stay home at the first sign of a fever, and don’t count it against their vacation hours. Anyway, I highly recommend the book. It’s an amusing read with a good storyline and excellent information. And a goat. With that, it’s time for our weekly update: -Rich Webcasts, Podcasts, Outside Writing, and Conferences Rich and Adrian presented at the Data Protection Decisions in DC. Rich had a full schedule with “Understanding and Selecting a DLP Solution”, “Understanding and Selecting a Database Activity Monitoring Solution”, “and Pragmatic Data Security”. Adrian got to lounge around after presenting “Truth, Lies and Fiction about Encryption”. We’ll be doing another one in Atlanta on November 19th. Rich was quoted in SC Magazine on the acquisition of Vericept by Trustwave. Don’t forget that you can subscribe to the Friday Summary via email. Favorite Securosis Posts Rich: Adrian’s new definition: Vendor Myopia Adrian: Going back in time as it was lost in the shuffle: Format and Datatype Preserving Encryption Mortman: XML Security Overview Meier: Cloud Data Security: Store (Rough Cut). Just read it! Other Securosis Posts Google and Micropayment There Are No Trusted Sites: New York Times Edition Project Quant Posts Raw Project Quant Survey Results Favorite Outside Posts Adrian: Top security risks, per SANS. Rich: Dancho’s Ultimate Guide to Scareware. Meier: Everything (and then some) you wanted to know about Zeus/Zbot. Mortman: Not strictly a security post, but this post talks about the general reactions that many of us have to dealing with new technologies or regulations. Top News and Posts Intelligence Analyst charged with hacking. C’mon, it’s just research! Tenable Nessus 4.0.2 released. RBS WorldPay hacked: full database access. Remote Exploit Released for Vista SMB2 Vulnerability. The New School of Information Security requests performance data from the federal government. Drive-by power grid takedown. Lovely. Blog Comment of the Week This week’s best comment comes from Dave in response to Format and Data Preserving Encryption: Ok, First let me start out by admitting I am almost entirely wrong 😉 Now we have that out of the way… I was correct in asserting the resulting reduced cypher is no more secure than a native cypher of that blocksize, but failed to add that the native cypher must have the same keyspace size as the cypher being reduced – for this reason, DES was a bad example (but 128 bit DESX, which is xor(k1,DES(k2,XOR(k1,Plaintext))) would be a good one. I was in error however asserting that, in practical terms, this in any way matters – in fact, the size of the keyspace (not the blocksize) is the overwhelming factor due to the physical size of another space – the space of all possible mappings that could result from the key schedule. it is

Share:
Read Post

Totally Transparent Research is the embodiment of how we work at Securosis. It’s our core operating philosophy, our research policy, and a specific process. We initially developed it to help maintain objectivity while producing licensed research, but its benefits extend to all aspects of our business.

Going beyond Open Source Research, and a far cry from the traditional syndicated research model, we think it’s the best way to produce independent, objective, quality research.

Here’s how it works:

  • Content is developed ‘live’ on the blog. Primary research is generally released in pieces, as a series of posts, so we can digest and integrate feedback, making the end results much stronger than traditional “ivory tower” research.
  • Comments are enabled for posts. All comments are kept except for spam, personal insults of a clearly inflammatory nature, and completely off-topic content that distracts from the discussion. We welcome comments critical of the work, even if somewhat insulting to the authors. Really.
  • Anyone can comment, and no registration is required. Vendors or consultants with a relevant product or offering must properly identify themselves. While their comments won’t be deleted, the writer/moderator will “call out”, identify, and possibly ridicule vendors who fail to do so.
  • Vendors considering licensing the content are welcome to provide feedback, but it must be posted in the comments - just like everyone else. There is no back channel influence on the research findings or posts.
    Analysts must reply to comments and defend the research position, or agree to modify the content.
  • At the end of the post series, the analyst compiles the posts into a paper, presentation, or other delivery vehicle. Public comments/input factors into the research, where appropriate.
  • If the research is distributed as a paper, significant commenters/contributors are acknowledged in the opening of the report. If they did not post their real names, handles used for comments are listed. Commenters do not retain any rights to the report, but their contributions will be recognized.
  • All primary research will be released under a Creative Commons license. The current license is Non-Commercial, Attribution. The analyst, at their discretion, may add a Derivative Works or Share Alike condition.
  • Securosis primary research does not discuss specific vendors or specific products/offerings, unless used to provide context, contrast or to make a point (which is very very rare).
    Although quotes from published primary research (and published primary research only) may be used in press releases, said quotes may never mention a specific vendor, even if the vendor is mentioned in the source report. Securosis must approve any quote to appear in any vendor marketing collateral.
  • Final primary research will be posted on the blog with open comments.
  • Research will be updated periodically to reflect market realities, based on the discretion of the primary analyst. Updated research will be dated and given a version number.
    For research that cannot be developed using this model, such as complex principles or models that are unsuited for a series of blog posts, the content will be chunked up and posted at or before release of the paper to solicit public feedback, and provide an open venue for comments and criticisms.
  • In rare cases Securosis may write papers outside of the primary research agenda, but only if the end result can be non-biased and valuable to the user community to supplement industry-wide efforts or advances. A “Radically Transparent Research” process will be followed in developing these papers, where absolutely all materials are public at all stages of development, including communications (email, call notes).
    Only the free primary research released on our site can be licensed. We will not accept licensing fees on research we charge users to access.
  • All licensed research will be clearly labeled with the licensees. No licensed research will be released without indicating the sources of licensing fees. Again, there will be no back channel influence. We’re open and transparent about our revenue sources.

In essence, we develop all of our research out in the open, and not only seek public comments, but keep those comments indefinitely as a record of the research creation process. If you believe we are biased or not doing our homework, you can call us out on it and it will be there in the record. Our philosophy involves cracking open the research process, and using our readers to eliminate bias and enhance the quality of the work.

On the back end, here’s how we handle this approach with licensees:

  • Licensees may propose paper topics. The topic may be accepted if it is consistent with the Securosis research agenda and goals, but only if it can be covered without bias and will be valuable to the end user community.
  • Analysts produce research according to their own research agendas, and may offer licensing under the same objectivity requirements.
  • The potential licensee will be provided an outline of our research positions and the potential research product so they can determine if it is likely to meet their objectives.
  • Once the licensee agrees, development of the primary research content begins, following the Totally Transparent Research process as outlined above. At this point, there is no money exchanged.
  • Upon completion of the paper, the licensee will receive a release candidate to determine whether the final result still meets their needs.
  • If the content does not meet their needs, the licensee is not required to pay, and the research will be released without licensing or with alternate licensees.
  • Licensees may host and reuse the content for the length of the license (typically one year). This includes placing the content behind a registration process, posting on white paper networks, or translation into other languages. The research will always be hosted at Securosis for free without registration.

Here is the language we currently place in our research project agreements:

Content will be created independently of LICENSEE with no obligations for payment. Once content is complete, LICENSEE will have a 3 day review period to determine if the content meets corporate objectives. If the content is unsuitable, LICENSEE will not be obligated for any payment and Securosis is free to distribute the whitepaper without branding or with alternate licensees, and will not complete any associated webcasts for the declining LICENSEE. Content licensing, webcasts and payment are contingent on the content being acceptable to LICENSEE. This maintains objectivity while limiting the risk to LICENSEE. Securosis maintains all rights to the content and to include Securosis branding in addition to any licensee branding.

Even this process itself is open to criticism. If you have questions or comments, you can email us or comment on the blog.