Securosis

Research

Tokenization: Token Servers

In our previous post we covered token creation, a core feature of token servers. Now we’ll discuss the remaining behind-the-scenes features of token servers: securing data, validating users, and returning original content when necessary. Many of these services are completely invisible to end users of token systems, and for day to day use you don’t need to worry about the details. But how the token server works internally has significant effects on performance, scalability, and security. You need to assess these functions during selection to ensure you don’t run into problems down the road. For simplicity we will use credit card numbers as our primary example in this post, but any type of data can be tokenized. To better understand the functions performed by the token server, let’s recap the two basic service requests. The token server accepts sensitive data (e.g., credit card numbers) from authenticated applications and users, responds by returning a new or existing token, and stores the encrypted value when creating new tokens. This comprises 99% of all token server requests. The token server also returns decrypted information to approved applications when presented a token with acceptable authorization credentials. Authentication Authentication is core to the security of token servers, which need to authenticate connected applications as well as specific users. To rebuff potential attacks, token servers perform bidirectional authentication of all applications prior to servicing requests. The first step in this process is to set up a mutually authenticated SSL/TLS session, and validate that the connection is started with a trusted certificate from an approved application. Any strong authentication should be sufficient, and some implementations may layer additional requirements on top. The second phase of authentication is to validate the user who issues a request. In some cases this may be a system/application administrator using specific administrative privileges, or it may be one of many service accounts assigned privileges to request tokens or to request a given unencrypted credit card number. The token server provides separation of duties through these user roles – serving requests only from only approved users, through allowed applications, from authorized locations. The token server may further restrict transactions – perhaps only allowing a limited subset of database queries. Data Encryption Although technically the sensitive data doesn’t might not be encrypted by the token server in the token database, in practice every implementation we are aware of encrypts the content. That means that prior to being written to disk and stored in the database, the data must be encrypted with an industry-accepted ‘strong’ encryption cipher. After the token is generated, the token server encrypts the credit card with a specific encryption key used only by that server. The data is then stored in the database, and thus written to disk along with the token, for safekeeping. Every current tokenization server is built on a relational database. These servers logically group tokens, credit cards, and related information in a database row – storing these related items together. At this point, one of two encryption options is applied: either field level or transparent data encryption. In field level encryption just the row (or specific fields within it) are encrypted. This allows a token server to store data from different applications (e.g., credit cards from a specific merchant) in the same database, using different encryption keys. Some token systems leverage transparent database encryption (TDE), which encrypts the entire database under a single key. In these cases the database performs the encryption on all data prior to being written to disk. Both forms of encryption protect data from indirect exposure such as someone examining disks or backup media, but field level encryption enables greater granularity, with a potential performance cost. The token server will have bundles the encryption, hashing, and random number generation features – both to create tokens and to encrypt network sessions and stored data. Finally, some implementations use asymmetric encryption to protect the data as it is collected within the application (or on a point of sale device) and sent to the server. The data is encrypted with the server’s public key. The connection session will still typically be encrypted with SSL/TLS as well, but to support authentication rather than for any claimed security increase from double encryption. The token server becomes the back end point of decryption, using the private key to regenerate the plaintext prior to generating the proxy token. Key Management Any time you have encryption, you need key management. Key services may be provided directly from the vendor of the token services in a separate application, or by hardware security modules (HSM), if supported. Either way, keys are kept separate from the encrypted data and algorithms, providing security in case the token server is compromised, as well as helping enforce separation of duties between system administrators. Each token server will have one or more unique keys – not shared by other token servers – to encrypt credit card numbers and other sensitive data. Symmetric keys are used, meaning the same key is used for both encryption and decryption. Communication between the token and key servers is mutually authenticated and encrypted. Tokenization systems also need to manage any asymmetric keys for connected applications and devices. As with any encryption, the key management server/device/functions must support secure key storage, rotation, and backup/restore. Token Storage Token storage is one of the more complicated aspects of token servers. How tokens are used to reference sensitive data or previous transactions is a major performance concern. Some applications require additional security precautions around the generation and storage of tokens, so tokens are not stored in a directly reference-able format. Use cases such as financial transactions with either single-use or multi-use tokens can require convoluted storage strategies to balance security of the data against referential performance. Let’s dig into some of these issues: Multi-token environments: Some systems provide a single token to reference every instance of a particular piece of sensitive data. So a credit card used at a specific merchant site will be represented by a

Share:
Read Post
dinosaur-sidebar

Totally Transparent Research is the embodiment of how we work at Securosis. It’s our core operating philosophy, our research policy, and a specific process. We initially developed it to help maintain objectivity while producing licensed research, but its benefits extend to all aspects of our business.

Going beyond Open Source Research, and a far cry from the traditional syndicated research model, we think it’s the best way to produce independent, objective, quality research.

Here’s how it works:

  • Content is developed ‘live’ on the blog. Primary research is generally released in pieces, as a series of posts, so we can digest and integrate feedback, making the end results much stronger than traditional “ivory tower” research.
  • Comments are enabled for posts. All comments are kept except for spam, personal insults of a clearly inflammatory nature, and completely off-topic content that distracts from the discussion. We welcome comments critical of the work, even if somewhat insulting to the authors. Really.
  • Anyone can comment, and no registration is required. Vendors or consultants with a relevant product or offering must properly identify themselves. While their comments won’t be deleted, the writer/moderator will “call out”, identify, and possibly ridicule vendors who fail to do so.
  • Vendors considering licensing the content are welcome to provide feedback, but it must be posted in the comments - just like everyone else. There is no back channel influence on the research findings or posts.
    Analysts must reply to comments and defend the research position, or agree to modify the content.
  • At the end of the post series, the analyst compiles the posts into a paper, presentation, or other delivery vehicle. Public comments/input factors into the research, where appropriate.
  • If the research is distributed as a paper, significant commenters/contributors are acknowledged in the opening of the report. If they did not post their real names, handles used for comments are listed. Commenters do not retain any rights to the report, but their contributions will be recognized.
  • All primary research will be released under a Creative Commons license. The current license is Non-Commercial, Attribution. The analyst, at their discretion, may add a Derivative Works or Share Alike condition.
  • Securosis primary research does not discuss specific vendors or specific products/offerings, unless used to provide context, contrast or to make a point (which is very very rare).
    Although quotes from published primary research (and published primary research only) may be used in press releases, said quotes may never mention a specific vendor, even if the vendor is mentioned in the source report. Securosis must approve any quote to appear in any vendor marketing collateral.
  • Final primary research will be posted on the blog with open comments.
  • Research will be updated periodically to reflect market realities, based on the discretion of the primary analyst. Updated research will be dated and given a version number.
    For research that cannot be developed using this model, such as complex principles or models that are unsuited for a series of blog posts, the content will be chunked up and posted at or before release of the paper to solicit public feedback, and provide an open venue for comments and criticisms.
  • In rare cases Securosis may write papers outside of the primary research agenda, but only if the end result can be non-biased and valuable to the user community to supplement industry-wide efforts or advances. A “Radically Transparent Research” process will be followed in developing these papers, where absolutely all materials are public at all stages of development, including communications (email, call notes).
    Only the free primary research released on our site can be licensed. We will not accept licensing fees on research we charge users to access.
  • All licensed research will be clearly labeled with the licensees. No licensed research will be released without indicating the sources of licensing fees. Again, there will be no back channel influence. We’re open and transparent about our revenue sources.

In essence, we develop all of our research out in the open, and not only seek public comments, but keep those comments indefinitely as a record of the research creation process. If you believe we are biased or not doing our homework, you can call us out on it and it will be there in the record. Our philosophy involves cracking open the research process, and using our readers to eliminate bias and enhance the quality of the work.

On the back end, here’s how we handle this approach with licensees:

  • Licensees may propose paper topics. The topic may be accepted if it is consistent with the Securosis research agenda and goals, but only if it can be covered without bias and will be valuable to the end user community.
  • Analysts produce research according to their own research agendas, and may offer licensing under the same objectivity requirements.
  • The potential licensee will be provided an outline of our research positions and the potential research product so they can determine if it is likely to meet their objectives.
  • Once the licensee agrees, development of the primary research content begins, following the Totally Transparent Research process as outlined above. At this point, there is no money exchanged.
  • Upon completion of the paper, the licensee will receive a release candidate to determine whether the final result still meets their needs.
  • If the content does not meet their needs, the licensee is not required to pay, and the research will be released without licensing or with alternate licensees.
  • Licensees may host and reuse the content for the length of the license (typically one year). This includes placing the content behind a registration process, posting on white paper networks, or translation into other languages. The research will always be hosted at Securosis for free without registration.

Here is the language we currently place in our research project agreements:

Content will be created independently of LICENSEE with no obligations for payment. Once content is complete, LICENSEE will have a 3 day review period to determine if the content meets corporate objectives. If the content is unsuitable, LICENSEE will not be obligated for any payment and Securosis is free to distribute the whitepaper without branding or with alternate licensees, and will not complete any associated webcasts for the declining LICENSEE. Content licensing, webcasts and payment are contingent on the content being acceptable to LICENSEE. This maintains objectivity while limiting the risk to LICENSEE. Securosis maintains all rights to the content and to include Securosis branding in addition to any licensee branding.

Even this process itself is open to criticism. If you have questions or comments, you can email us or comment on the blog.