Tokenization: Token Servers, Part 3, Deployment Models

We have covered the internals of token servers and talked about architecture and integration of token services. Now we need to look at some of the different deployment models and how they match up to different types of businesses. Protecting medical records in multi-company environments is a very different challenge than processing credit cards for thousands of merchants. Central Token Server The most common deployment model we see today is a single token server that sits between application servers and the back end transaction servers. The token server issues one or more tokens for each instance of sensitive information that it recieves. For most applications it becomes a reference library, storing sensitive information within a repository and providing an index back to the real data as needed. The token service is placed in line with existing transaction systems, adding a new substitution step between business applications and back-end data processing. As mentioned in previous posts, this model is excellent for security as it consolidates all the credit card data into a single highly secure server; additionally, it is very simple to deploy as all services reside in a single location. And limiting the number of locations where sensitive data is stored and accessed both improves security and reduces auditing, as there are fewer systems to review. A central token server works well for small businesses with consolidated operations, but does not scale well for larger distributed organizations. Nor does it provide the reliability and uptime demanded by always-on Internet businesses. For example: Latency: The creation of a new token, lookup of existing customers, and data integrity checks are computationally complex. Most vendors have worked hard to alleviate this problem, but some still have latency issues that make them inappropriate for financial/point of sale usage. Failover: If the central token server breaks down, or is unavailable because of a network outage, all processing of sensitive data (such as orders) stops. Back-end processes that require tokens halt. Geography: Remote offices, especially those in remote geographic locations, suffer from network latency, routing issues, and Internet outages. Remote token lookups are slow, and both business applications and back-end processes suffer disproportionately in the event of disaster or prolonged network outages. To overcome issues in performance, failover, and network communications, several other deployment variations are available from tokenization vendors. Distributed Token Servers With distributed token servers, the token databases are copies and shared among multiple sites. Each has a copy of the tokens and encrypted data. In this model, each site is a peer of the others, with full functionality. This model solves some of the performance issues with network latency for token lookup, as well as failover concerns. Since each token server is a mirror, if any single token server goes down, the others can share its load. Token generation overhead is mitigated, as multiple servers assist in token generation and distribution of requests balances the load. Distributed servers are costly but appropriate for financial transaction processing. While this model offers the best option for uptime and performance, synchronization between servers requires careful consideration. Multiple copies means synchronization issues, and carefully timed updates of data between locations, along with key management so encrypted credit card numbers can be accessed. Finally, with multiple databases all serving tokens, you increase the number of repositories that must be secured, maintained, and audited increases substantially. Partitioned Token Servers In a partitioned deployment, a single token server is designated as ‘active’, and one or more additional token servers are ‘passive’ backups. In this model if the active server crashes or is unavailable a passive server becomes active until the primary connection can be re-established. The partitioned model improves on the central model by replicating the (single, primary) server configuration. These replicas are normally at the same location as the primary, but they may also be distributed to other locations. This differs from the distributed model in that only one server is active at a time, and they are not all peers of one another. Conceptually partitioned servers support a hybrid model where each server is active and used by a particular subset of endpoints and transaction servers, as well as as a backup for other token servers. In this case each token server is assigned a primary responsibility, but can take on secondary roles if another token server goes down. While the option exists, we are unaware of any customers using it today. The partitioned model solves failover issues: if a token server fails, the passive server takes over. Synchronization is easier with this model as the passive server need only mirror the active server, and bi-directional synchronization is not required. Token servers leverage the mirroring capabilities built into the relational database engines, as part of their back ends, to provide this capability. Next we will move on to use cases. Share:

Read Post

Tokenization: Series Index

Understanding and Selecting a Tokenization Solution: Introduction Business Justification Token System Basics The Tokens Token Servers, Part 1, Internal Functions Token Servers, Part 2, Architecture and Integration Token Servers, Part 3, Deployment Models Tokenization: Use Cases, Part 1 Tokenization: Use Cases, Part 2 Tokenization: Use Cases, Part 3 Tokenization Topic Roundup Tokenization: Selection Process Share:

Read Post

GSM Cell Phones to Be Intercepted in Defcon Demonstration

This hit Slashdot today, and I expect the mainstream press to pick it up fairly soon. Chris Paget will be intercepting cell phone communications at Defcon during a live demonstration. I suspect this may be the single most spectacular presentation during all of this year’s Defcon and Black Hat. Yes, people will be cracking SCADA and jackpotting ATMs, but nothing strikes closer to the heart than showing major insecurities with the single most influential piece of technology in society. Globally I think cell phones are even more important than television. Chris is taking some major precautions to stay out of jail. He’s working hand in hand with the Electronic Frontier Foundation on the legal side, and there will be plenty of warnings on-site and no information from any calls recorded or stored. I suspect he’s setting up a microcell under his control and intercepting communications in a man in the middle attack, but we’ll have to wait until his demo to get all the details. For years the mobile phone companies have said this kind of interception is impractical or impossible. I guess we’ll all find out this weekend… Share:

Read Post

Totally Transparent Research is the embodiment of how we work at Securosis. It’s our core operating philosophy, our research policy, and a specific process. We initially developed it to help maintain objectivity while producing licensed research, but its benefits extend to all aspects of our business.

Going beyond Open Source Research, and a far cry from the traditional syndicated research model, we think it’s the best way to produce independent, objective, quality research.

Here’s how it works:

  • Content is developed ‘live’ on the blog. Primary research is generally released in pieces, as a series of posts, so we can digest and integrate feedback, making the end results much stronger than traditional “ivory tower” research.
  • Comments are enabled for posts. All comments are kept except for spam, personal insults of a clearly inflammatory nature, and completely off-topic content that distracts from the discussion. We welcome comments critical of the work, even if somewhat insulting to the authors. Really.
  • Anyone can comment, and no registration is required. Vendors or consultants with a relevant product or offering must properly identify themselves. While their comments won’t be deleted, the writer/moderator will “call out”, identify, and possibly ridicule vendors who fail to do so.
  • Vendors considering licensing the content are welcome to provide feedback, but it must be posted in the comments - just like everyone else. There is no back channel influence on the research findings or posts.
    Analysts must reply to comments and defend the research position, or agree to modify the content.
  • At the end of the post series, the analyst compiles the posts into a paper, presentation, or other delivery vehicle. Public comments/input factors into the research, where appropriate.
  • If the research is distributed as a paper, significant commenters/contributors are acknowledged in the opening of the report. If they did not post their real names, handles used for comments are listed. Commenters do not retain any rights to the report, but their contributions will be recognized.
  • All primary research will be released under a Creative Commons license. The current license is Non-Commercial, Attribution. The analyst, at their discretion, may add a Derivative Works or Share Alike condition.
  • Securosis primary research does not discuss specific vendors or specific products/offerings, unless used to provide context, contrast or to make a point (which is very very rare).
    Although quotes from published primary research (and published primary research only) may be used in press releases, said quotes may never mention a specific vendor, even if the vendor is mentioned in the source report. Securosis must approve any quote to appear in any vendor marketing collateral.
  • Final primary research will be posted on the blog with open comments.
  • Research will be updated periodically to reflect market realities, based on the discretion of the primary analyst. Updated research will be dated and given a version number.
    For research that cannot be developed using this model, such as complex principles or models that are unsuited for a series of blog posts, the content will be chunked up and posted at or before release of the paper to solicit public feedback, and provide an open venue for comments and criticisms.
  • In rare cases Securosis may write papers outside of the primary research agenda, but only if the end result can be non-biased and valuable to the user community to supplement industry-wide efforts or advances. A “Radically Transparent Research” process will be followed in developing these papers, where absolutely all materials are public at all stages of development, including communications (email, call notes).
    Only the free primary research released on our site can be licensed. We will not accept licensing fees on research we charge users to access.
  • All licensed research will be clearly labeled with the licensees. No licensed research will be released without indicating the sources of licensing fees. Again, there will be no back channel influence. We’re open and transparent about our revenue sources.

In essence, we develop all of our research out in the open, and not only seek public comments, but keep those comments indefinitely as a record of the research creation process. If you believe we are biased or not doing our homework, you can call us out on it and it will be there in the record. Our philosophy involves cracking open the research process, and using our readers to eliminate bias and enhance the quality of the work.

On the back end, here’s how we handle this approach with licensees:

  • Licensees may propose paper topics. The topic may be accepted if it is consistent with the Securosis research agenda and goals, but only if it can be covered without bias and will be valuable to the end user community.
  • Analysts produce research according to their own research agendas, and may offer licensing under the same objectivity requirements.
  • The potential licensee will be provided an outline of our research positions and the potential research product so they can determine if it is likely to meet their objectives.
  • Once the licensee agrees, development of the primary research content begins, following the Totally Transparent Research process as outlined above. At this point, there is no money exchanged.
  • Upon completion of the paper, the licensee will receive a release candidate to determine whether the final result still meets their needs.
  • If the content does not meet their needs, the licensee is not required to pay, and the research will be released without licensing or with alternate licensees.
  • Licensees may host and reuse the content for the length of the license (typically one year). This includes placing the content behind a registration process, posting on white paper networks, or translation into other languages. The research will always be hosted at Securosis for free without registration.

Here is the language we currently place in our research project agreements:

Content will be created independently of LICENSEE with no obligations for payment. Once content is complete, LICENSEE will have a 3 day review period to determine if the content meets corporate objectives. If the content is unsuitable, LICENSEE will not be obligated for any payment and Securosis is free to distribute the whitepaper without branding or with alternate licensees, and will not complete any associated webcasts for the declining LICENSEE. Content licensing, webcasts and payment are contingent on the content being acceptable to LICENSEE. This maintains objectivity while limiting the risk to LICENSEE. Securosis maintains all rights to the content and to include Securosis branding in addition to any licensee branding.

Even this process itself is open to criticism. If you have questions or comments, you can email us or comment on the blog.