Securosis

Research

Monitoring up the Stack: User Activity Monitoring

The previous Monitoring up the Stack post examined Identity Monitoring, which is a set of processes to monitor events around provisioning and managing accounts. The Identity Monitor is typically blind to one very important aspect of accounts: how they are used at runtime. So you know who the user is, but not what they are doing. User Activity Monitoring addresses this gap through reporting not on how the accounts were created and updated in the directory, but by examining user actions on systems and applications, and linking them to assigned roles. Implementing User Activity Monitoring User Activity Monitors can be deployed to monitor access patterns and system usage. The collected data regarding how the system is being used, and by who, is then sent to the SIEM/Log Management system. This gives the SIEM/Log Management system data that is particularly helpful for attribution purposes. Implementing User Activity Monitoring rests on four key decisions. First, what constitutes a user? Next, what activities are worth monitoring? Third, what does typical activity look like, and how do we define policies to scope acceptable use? And finally, where and how should the monitor be deployed? The question about what constitutes a user seems simple, and on one level it is. Most likely a user is an account in the corporate or customer directory, such as Active Directory or LDAP. But sometimes there are accounts for non-human system users, such as service accounts and machine accounts. In many systems service accounts, machine accounts, and other forms of automated batch processing can do just as much damage as any other account/function. After all, these features were programmed and configured by humans, and are subject to misuse like any other accounts, so likely are worth monitoring as well. Drilling down further into users, how are they identified? To start with, there is probably a username. But remember the data that the User Activity Monitor sends to the SIEM/Log Management system is will be used after the fact. What user data will help a security analyst understand the user’s actions and whether they were malicious or harmful? Several data elements are useful for building a meaningful user record: Username: The basic identifier for a user in the system, including the namespace or other protocol-specific data. Identity Provider: The name of the directory or database that authenticated the user. Group/Role Membership: Any group or role information assigned to the user account, or other data used for authorization purposes. Attributes: Was the user account assigned any privileges or capabilities? Are there time of day or location attributes that are important for verifying user authenticity? Authentication Information: If available, information around how the user was authenticated can be helpful. Was the user dialed in from a remote location? Did they log in from the office? When did they log in? And so on. A log entry that reads user=rajpatel; is far less useful than one that contains “user=rajpatel; identityprovider=ExternalCORPLDAP; Group=Admin; Authenticated=OTP”. The more detailed the information around the user and their credential, the more precsion the analyst has to work with. Usually this data is easy to get at runtime – it is available in security tokens such as SAML and Kerberos – but the monitor must be configured to collect it. Now that we see how to identify a user, what activities are of interest to the SIEM/Log Management system? The types of activities mentioned in other Monitoring up the Stack posts can all be enriched through the user data model described above; in addition there are some user-specific events worth tracking, including: User Session Activities: events that create, use, and terminate sessions; such as login and logout events. Security Token Activities: events that issue, validate, exchange and terminate security tokens. System Activities: events based around system exceptions, startups, shutdowns, and availability issues. Platform Activities: events from specific ports or interfaces, such as USB drive access. Inter-Application Activities: events performed by more than one application on behalf of the user, all linked to the same business function. Now that we know what kind of events that we are looking for, what do we want to do with these events? If we are monitoring we need to specify policies to define appropriate use, and what should be done when an event – or in some cases a series of events – occurs. Policy set up and administration is a giant hurdle with SIEM systems today, and adding user activity monitoring – or any other form of monitoring – will require the same time to set up and adjust over time. Based on an event type listed above, you select the behavior type you want to monitor and define what users can & cannot do. User monitoring systems, at minimum, offer attribute-based analysis. More advanced systems offer heuristics and behavioral analysis; these provide flexibility in how users are monitored, and reduce false positives as the analysis adapts to user actions over time. The final step is deployment of the User Activity Monitor; and the logical place to start is the Identity repository because repositories can write auditable log events when they issue, validate, and terminate sessions and security tokens; thus the Identity repository can report to the SIEM/Log Management system on what users were issued what sessions and tokens. This location can be made more valuable by adding User Activity Monitors closer to the monitored resources, such as Web Application Firewalls and Web Access Managers. These systems can enhance visibility beyond simply what tokens and sessions were issued (from the Identity repository), adding information on how were they used and what the user accessed. Correlation: Putting the Data to Work With monitors situated to report on User Activity, the next step is to use the data. The data and event models described above provide an enriched model that enables the analyst to trace events back upstream. For example, the analyst can set up rules that identify known good and bad behavior patterns to reflect authorized usage and potentially malicious patterns. Authorized usage patterns generally reflect the use case flows that users follow. In most cases these do

Share:
Read Post

Totally Transparent Research is the embodiment of how we work at Securosis. It’s our core operating philosophy, our research policy, and a specific process. We initially developed it to help maintain objectivity while producing licensed research, but its benefits extend to all aspects of our business.

Going beyond Open Source Research, and a far cry from the traditional syndicated research model, we think it’s the best way to produce independent, objective, quality research.

Here’s how it works:

  • Content is developed ‘live’ on the blog. Primary research is generally released in pieces, as a series of posts, so we can digest and integrate feedback, making the end results much stronger than traditional “ivory tower” research.
  • Comments are enabled for posts. All comments are kept except for spam, personal insults of a clearly inflammatory nature, and completely off-topic content that distracts from the discussion. We welcome comments critical of the work, even if somewhat insulting to the authors. Really.
  • Anyone can comment, and no registration is required. Vendors or consultants with a relevant product or offering must properly identify themselves. While their comments won’t be deleted, the writer/moderator will “call out”, identify, and possibly ridicule vendors who fail to do so.
  • Vendors considering licensing the content are welcome to provide feedback, but it must be posted in the comments - just like everyone else. There is no back channel influence on the research findings or posts.
    Analysts must reply to comments and defend the research position, or agree to modify the content.
  • At the end of the post series, the analyst compiles the posts into a paper, presentation, or other delivery vehicle. Public comments/input factors into the research, where appropriate.
  • If the research is distributed as a paper, significant commenters/contributors are acknowledged in the opening of the report. If they did not post their real names, handles used for comments are listed. Commenters do not retain any rights to the report, but their contributions will be recognized.
  • All primary research will be released under a Creative Commons license. The current license is Non-Commercial, Attribution. The analyst, at their discretion, may add a Derivative Works or Share Alike condition.
  • Securosis primary research does not discuss specific vendors or specific products/offerings, unless used to provide context, contrast or to make a point (which is very very rare).
    Although quotes from published primary research (and published primary research only) may be used in press releases, said quotes may never mention a specific vendor, even if the vendor is mentioned in the source report. Securosis must approve any quote to appear in any vendor marketing collateral.
  • Final primary research will be posted on the blog with open comments.
  • Research will be updated periodically to reflect market realities, based on the discretion of the primary analyst. Updated research will be dated and given a version number.
    For research that cannot be developed using this model, such as complex principles or models that are unsuited for a series of blog posts, the content will be chunked up and posted at or before release of the paper to solicit public feedback, and provide an open venue for comments and criticisms.
  • In rare cases Securosis may write papers outside of the primary research agenda, but only if the end result can be non-biased and valuable to the user community to supplement industry-wide efforts or advances. A “Radically Transparent Research” process will be followed in developing these papers, where absolutely all materials are public at all stages of development, including communications (email, call notes).
    Only the free primary research released on our site can be licensed. We will not accept licensing fees on research we charge users to access.
  • All licensed research will be clearly labeled with the licensees. No licensed research will be released without indicating the sources of licensing fees. Again, there will be no back channel influence. We’re open and transparent about our revenue sources.

In essence, we develop all of our research out in the open, and not only seek public comments, but keep those comments indefinitely as a record of the research creation process. If you believe we are biased or not doing our homework, you can call us out on it and it will be there in the record. Our philosophy involves cracking open the research process, and using our readers to eliminate bias and enhance the quality of the work.

On the back end, here’s how we handle this approach with licensees:

  • Licensees may propose paper topics. The topic may be accepted if it is consistent with the Securosis research agenda and goals, but only if it can be covered without bias and will be valuable to the end user community.
  • Analysts produce research according to their own research agendas, and may offer licensing under the same objectivity requirements.
  • The potential licensee will be provided an outline of our research positions and the potential research product so they can determine if it is likely to meet their objectives.
  • Once the licensee agrees, development of the primary research content begins, following the Totally Transparent Research process as outlined above. At this point, there is no money exchanged.
  • Upon completion of the paper, the licensee will receive a release candidate to determine whether the final result still meets their needs.
  • If the content does not meet their needs, the licensee is not required to pay, and the research will be released without licensing or with alternate licensees.
  • Licensees may host and reuse the content for the length of the license (typically one year). This includes placing the content behind a registration process, posting on white paper networks, or translation into other languages. The research will always be hosted at Securosis for free without registration.

Here is the language we currently place in our research project agreements:

Content will be created independently of LICENSEE with no obligations for payment. Once content is complete, LICENSEE will have a 3 day review period to determine if the content meets corporate objectives. If the content is unsuitable, LICENSEE will not be obligated for any payment and Securosis is free to distribute the whitepaper without branding or with alternate licensees, and will not complete any associated webcasts for the declining LICENSEE. Content licensing, webcasts and payment are contingent on the content being acceptable to LICENSEE. This maintains objectivity while limiting the risk to LICENSEE. Securosis maintains all rights to the content and to include Securosis branding in addition to any licensee branding.

Even this process itself is open to criticism. If you have questions or comments, you can email us or comment on the blog.