Securosis

Research

Is Your Email Address Worth More Than Your Credit Card Number?

It used to be that we didn’t care too much if someone stole a pile of email addresses. At worst we’d end up on yet another spam list, and these days most folks have pretty decent spam filters. Sure, it’s annoying, but it was pretty low on the scale of security risks. But I’m starting to think that email addresses – depending on context – are now worth far more to certain attackers than credit card numbers. As annoying as credit card fraud is, it’s generally a manageable problem. For us as consumers it’s mostly a nuisance, because we are protected from financial loss. It’s a bigger problem for merchants and banks, but fraud detection systems and law enforcement together manage to keep losses to an acceptable level – otherwise we would see Chip and PIN or other technologies, as opposed to PCI, as the security focus. In terms of economics, we have seen bad guys shift to lower-level persistent fraud rather than big breaches. They’re stealing a lot, but the big lesson from the Verizon Data Breach Investigations Report is that they are stealing smaller batches, and are much more likely to get caught than in the past. Your email, on the other hand, may be far more valuable. Not necessarily to random online street criminals (although it’s still valuable to them, too), but to more sophisticated attackers. At least if they get your email address with ‘interesting’ context. Let’s look at the main method of attacks these days. From APT to botnets, we see one consistent trend – reliance on phishing to get past user defenses and gain a beachhead on the target. Get the user to click a link or open a file, and you own their system. “Spear phishing” (highly targeted phishing) has been identified as the primary attack technique currently being used by the APT – they will shift once it stops working so well. Now think about last week’s breach of Sega, or back to the Epsilon breach. In these cases emails, first names, and context were obtained. Not just an email, but an email with a real name and a site you registered to receive email from. We like to hammer users on how stupid they are for clicking any link in a storm, but what are the odds of even the most seasoned security professionals defending themselves from every single one of these attacks with, in effect, detailed dossiers on the targets? When you get a correctly formatted email with your name from a site you registered with, there’s a reasonable chance you will click – and they can easily afford to send more fishing messages than real mail (spam has been up as high as 90% of email on the Internet, and these are much better at looking legitimate and getting past spam filters). Don’t play coy and claim you’ll check the From: address every time – these all come from services you don’t know personally, and often from a third party domain as part of the service. Considering everything an attacker can do with those resources, I suspect email addresses + context might be the new bad guy hotness. Hit every TiVo subscriber with a personally addressed phishing message, perhaps modeled from the last email blast TiVo actually sent out? Gold. Share:

Share:
Read Post

Tokenization vs. Encryption: Payment Data Security

Continuing our series on tokenization for compliance, it’s time to look at how tokens are used to secure payment data. I will focus on how tokenization is employed for credit card security and helps with compliance because this model is driving adoption today. As defined in the introduction, tokenization is the process of replacing sensitive information with tokens. The tokens are ‘random’ values that resemble the sensitive data they replace, but lack intrinsic value. In terms of payment data security, tokenization is used to replace sensitive payment data such as bank account numbers. But its recent surge in popularity has been specifically about replacing credit card data. The vast majority of current tokenization projects are squarely intended to reduce the cost of achieving PCI compliance. Removing credit cards from all or part of your environment sounds like a good security measure, and it is. After all, thieves can’t steal what’s not there. But that’s not actually why tokenization has become popular for credit card replacement. Tokenization is popular because it saves money. Large merchants must undergo extensive examinations of their IT security and processes to verify compliance with the Payment Card Industry Data Security Standard (PCI-DSS). Every system that transmits or stores credit card data is subject to review. Small and mid-sized merchants must go through all the same steps as large merchants except the compliance audit, where they are on the honor system. The list of DSS requirements is lengthy – a substantial investment of time and money is required to create policies, secure systems, and generate the reports PCI assessors need. While the Council’s prescribed security controls are conceptually simple, in practice they demand a security review of the entire IT infrastructure. Over the last couple decades firms have used credit card numbers to identify and reference customers, transactions, payments, and chargebacks. As the standard reference key, credit card numbers were stored in billing, order management, shipping, customer care, business intelligence, and even fraud detection systems. They were used to cross-reference data from third parties in order to gather intelligence on consumer buying trends. Large retail organizations typically stored credit card data in every critical business processing system. When firms began suffering data breaches they started to encrypt databases and archives, and implemented central key management systems to control access to payment data. But faulty encryption deployments, SQL injection attacks, and credential hijacking continued to expose credit cards to fraud. The Payment Card Industry quickly stepped in to require a standardized set of security measures of everyone who processes and stores credit card data. The problem is that it is incredibly expensive to audit network, platform, application, user, and data security across all these systems – and then document usage and security policies to demonstrate compliance with PCI-DSS. If credit card data is replaced with tokens, almost half of the security checks no longer apply. For example, the requirement to encrypt databases or archives goes away with credit card numbers. Key management systems shrink, as they no longer need to manage keys across the entire organization. You don’t need to mask report data, rewrite applications, or reset user authorization to restrict access. Tokenization drastically reduces the complexity and scope of auditing and securing operations. That doesn’t mean you don’t need to maintain a secure network, but the requirements are greatly reduced. Even for smaller merchants who can self-assess, tokenization reduces the workload. You must secure your systems – primarily to ensure token and payment services are not open to attack – but the burden is dramatically lightened. Tokens can be created and managed in-house, or by third party service providers. Both models support web commerce and point-of-sale environments, and integrate easily with existing systems. For in-house token platforms, you own and operate the token system, including the token database. The token server is integrated with back-end transaction systems and swaps tokens in during transactions. You still keep credit card data, but only a single copy of each card, in the secure token database. This type of systems is most common with very large merchants who need to keep the original card data and want to keep transaction fees to a minimum. Third-party token services, such as those provided directly by payment processors – return a token to signify a successful payment. But the merchant retains only the token rather than the credit card. The payment processor stores the card data along with the issued token for recurring payments and dispute resolution. Small and mid-sized merchants with no need to retain credit card numbers lean towards this model – they sacrifice some control and pay higher transaction fees in exchange for convenience, reduced liability, and compliance costs. Deployment of token systems can still be tricky, as you need to substitute existing payment data with tokens. Updates must be synchronized across multiple systems so keys and data maintain relational integrity. Token vendors, both in-house and third party service providers, offer tools and services to perform the conversion. If you have credit card data scattered throughout your company, plan on paying a bit more during the conversion. But tokenization is mostly a drop-in replacement for encryption of credit card data. It requires very little in the way of changes to your systems, processes, or applications. While encryption can provide very strong security, customers and auditors prefer tokenization because it’s simpler to implement, simpler to manage, and easier to audit. Today, tokenization of payment data is driving the market. But there are many other uses for data tokenization, particularly in health care and for other Personally Identifiable Information (PII). In the mid-term I expect to see tokenization increasingly applied to databases containing PII, which is the topic for our next post. Share:

Share:
Read Post
dinosaur-sidebar

Totally Transparent Research is the embodiment of how we work at Securosis. It’s our core operating philosophy, our research policy, and a specific process. We initially developed it to help maintain objectivity while producing licensed research, but its benefits extend to all aspects of our business.

Going beyond Open Source Research, and a far cry from the traditional syndicated research model, we think it’s the best way to produce independent, objective, quality research.

Here’s how it works:

  • Content is developed ‘live’ on the blog. Primary research is generally released in pieces, as a series of posts, so we can digest and integrate feedback, making the end results much stronger than traditional “ivory tower” research.
  • Comments are enabled for posts. All comments are kept except for spam, personal insults of a clearly inflammatory nature, and completely off-topic content that distracts from the discussion. We welcome comments critical of the work, even if somewhat insulting to the authors. Really.
  • Anyone can comment, and no registration is required. Vendors or consultants with a relevant product or offering must properly identify themselves. While their comments won’t be deleted, the writer/moderator will “call out”, identify, and possibly ridicule vendors who fail to do so.
  • Vendors considering licensing the content are welcome to provide feedback, but it must be posted in the comments - just like everyone else. There is no back channel influence on the research findings or posts.
    Analysts must reply to comments and defend the research position, or agree to modify the content.
  • At the end of the post series, the analyst compiles the posts into a paper, presentation, or other delivery vehicle. Public comments/input factors into the research, where appropriate.
  • If the research is distributed as a paper, significant commenters/contributors are acknowledged in the opening of the report. If they did not post their real names, handles used for comments are listed. Commenters do not retain any rights to the report, but their contributions will be recognized.
  • All primary research will be released under a Creative Commons license. The current license is Non-Commercial, Attribution. The analyst, at their discretion, may add a Derivative Works or Share Alike condition.
  • Securosis primary research does not discuss specific vendors or specific products/offerings, unless used to provide context, contrast or to make a point (which is very very rare).
    Although quotes from published primary research (and published primary research only) may be used in press releases, said quotes may never mention a specific vendor, even if the vendor is mentioned in the source report. Securosis must approve any quote to appear in any vendor marketing collateral.
  • Final primary research will be posted on the blog with open comments.
  • Research will be updated periodically to reflect market realities, based on the discretion of the primary analyst. Updated research will be dated and given a version number.
    For research that cannot be developed using this model, such as complex principles or models that are unsuited for a series of blog posts, the content will be chunked up and posted at or before release of the paper to solicit public feedback, and provide an open venue for comments and criticisms.
  • In rare cases Securosis may write papers outside of the primary research agenda, but only if the end result can be non-biased and valuable to the user community to supplement industry-wide efforts or advances. A “Radically Transparent Research” process will be followed in developing these papers, where absolutely all materials are public at all stages of development, including communications (email, call notes).
    Only the free primary research released on our site can be licensed. We will not accept licensing fees on research we charge users to access.
  • All licensed research will be clearly labeled with the licensees. No licensed research will be released without indicating the sources of licensing fees. Again, there will be no back channel influence. We’re open and transparent about our revenue sources.

In essence, we develop all of our research out in the open, and not only seek public comments, but keep those comments indefinitely as a record of the research creation process. If you believe we are biased or not doing our homework, you can call us out on it and it will be there in the record. Our philosophy involves cracking open the research process, and using our readers to eliminate bias and enhance the quality of the work.

On the back end, here’s how we handle this approach with licensees:

  • Licensees may propose paper topics. The topic may be accepted if it is consistent with the Securosis research agenda and goals, but only if it can be covered without bias and will be valuable to the end user community.
  • Analysts produce research according to their own research agendas, and may offer licensing under the same objectivity requirements.
  • The potential licensee will be provided an outline of our research positions and the potential research product so they can determine if it is likely to meet their objectives.
  • Once the licensee agrees, development of the primary research content begins, following the Totally Transparent Research process as outlined above. At this point, there is no money exchanged.
  • Upon completion of the paper, the licensee will receive a release candidate to determine whether the final result still meets their needs.
  • If the content does not meet their needs, the licensee is not required to pay, and the research will be released without licensing or with alternate licensees.
  • Licensees may host and reuse the content for the length of the license (typically one year). This includes placing the content behind a registration process, posting on white paper networks, or translation into other languages. The research will always be hosted at Securosis for free without registration.

Here is the language we currently place in our research project agreements:

Content will be created independently of LICENSEE with no obligations for payment. Once content is complete, LICENSEE will have a 3 day review period to determine if the content meets corporate objectives. If the content is unsuitable, LICENSEE will not be obligated for any payment and Securosis is free to distribute the whitepaper without branding or with alternate licensees, and will not complete any associated webcasts for the declining LICENSEE. Content licensing, webcasts and payment are contingent on the content being acceptable to LICENSEE. This maintains objectivity while limiting the risk to LICENSEE. Securosis maintains all rights to the content and to include Securosis branding in addition to any licensee branding.

Even this process itself is open to criticism. If you have questions or comments, you can email us or comment on the blog.