Securosis

Research

New Paper: Implementing and Managing a DLP Solution

Yes, folks, at long last, here is my follow-up to Understanding and Selecting a DLP Solution. As you might guess from the title, this one is focused on implementation and management. After you have picked a tool, this will help you get up and running, and then keep it running, with as little overhead as possible. I would like to thank McAfee for licensing the paper and making it possible for us to give this stuff out for free (and by now we hope you’ve figured out that all the content is developed independently and objectively). McAfee is hosting the paper and you can download it from us: Landing page PDF (direct) Share:

Share:
Read Post

Evolving Endpoint Malware Detection: Controls, Trade-offs and Compromises

As we wrap up our Evolving Endpoint Malware Detection series, it’s time to take it to the next level. We spent the first three posts on why detection is challenging, the types of behavioral indicators you should look for, and some additional data sources for added context to improve effectiveness and reduce false positives. Now we need to do something with the information we have gathered – basically to provide a verdict on whether something is malware or not, and if it is to block it. Alas, this is where you need to understand the trade-offs between different controls and decide what is best for your environment. The Malware Detection ‘Cocktail’ Let’s jump back in the time machine, to the good old days on the cutting edge of spam detection. Spammers got pretty good and evolved their techniques to evade every new defense the email security folks came up with. 3-4 years in, around 2004-2005, the vendors used 15-20 different tactics to determine whether any particular email message was unsolicited. Sound familiar? Malware detection has reached a similar point. Lots of techniques, none foolproof, and severe consequences for false positives. What can we learn from how the anti-spam vendors evolved? Aside from the fact that over time the effectiveness you can achieve and maintain is limited? The best approach for dealing with a number of different detection techniques is to use a cocktail approach. This involves scoring each technique (possibly quite coarsely), feeding it into an algorithm with appropriate weighting for each technique, and then determining a threshold that indicates something bad. Obviously the secret sauce is in the algorithm, and it’s the vendor’s responsibility to handle it. Yes, a lot of this happens (and should remain) behind the curtain, but we are trying to explain how the process works so you can be an educated shopper for new devices and products that claim to detect advanced malware. But we have also learned from the anti-spam folks that you cannot be right every time. So we need to plug our research on incident response and forensics, including Incident Response Fundamentals, React Faster and Better, and Network Security Analysis, to ensure you are prepared for the inevitable failures of even the best malware detection. Let’s take a look at the components and controls you will rely on: Traditional Endpoint Protection Thanks to your friendly compliance mandate and check-box-centric auditors, you still need endpoint protection – often called anti-virus. But most endpoint security suites encompass much more than traditional anti-virus signatures, including some of the tactics we have discussed in this series. Obviously with 15-20 players remaining in this market, the quality of detection is all over the map and quite dynamic. Each vendor goes through ups and downs in detection effectiveness. So how do we recommend choosing an endpoint suite? That could be an entire series itself, but suffice it to say that the effectiveness of detection probably shouldn’t be the most important selection criteria. It is too hard to verify, and they each do a decent job of finding known malware, and a mediocre job of finding the advanced attacks we have focused this series on. You need endpoint protection for compliance; so you should minimize price, ensure that agents can be effectively managed (especially if you have thousands of endpoints), and make sure that the agents are as thin as possible. It’s bad enough having to use a control that doesn’t work as well as it needs to, but crushing device performance adds insult to injury. By all means, check the latest comparative effectiveness rankings, but understand they go out of date pretty quickly. Network-based Malware Detection We believe that the earlier you can detect malware and block it, the less mess you will inevitably have to clean up. That means working to eliminate attacks at the perimeter or even in the cloud before an attack ever gets near your desktop. How can you do this? A new type of network security device scrutinizes ingress traffic to detect malware files before they enter your corporate network. We expect this capability to become a feature of pretty much every perimeter device over time, but for now you will need to deal with specialist companies and separate devices. We published some research on this earlier in 2012; so check out Network-based Malware Detection for details on the approaches, limitations, and roles of these devices in your network security strategy. Advanced Endpoint Controls We all understand that traditional endpoint security suites leave too much attack surface exposed to advanced attackers, depending on your pain threshold (how likely you are to be targeted by an advanced attacker). An additional level of endpoint protection may be necessary. So let’s discuss some of these alternatives – which detect and block based on behavioral indicators, track file trajectories and proliferation, and/or allow authorized executables. The first category of advanced endpoint control is really next-generation host intrusion prevention (HIPS) technology. As we have mentioned, HIPS looks for funky behavior within the endpoint, but has lacked sufficient context to be truly effective. A few technologies have emerged to address these concerns, leveraging the kind of malware detection cocktail discussed above. This analytical approach to what’s happening on the endpoint, and applying proper context based on application and specific behavior can reduce false positives and improve effectiveness. These tools impact user experience by blocking things (which is usually a good thing), but need to be put through proper diligence before broad deployment. But you do that with all new technologies anyway, right? As we talked about in Providing Context, malware proliferation analytics can be very useful for tracking the spread of malware within your environment, securing the origin point, and reducing the possibility of constant reinfection. So we are fans of this kind of analysis as another layer of defense. You have two main options for gathering the information for this kind of analysis: either on the endpoint or within the network. Endpoint solutions provide a thin agent which

Share:
Read Post
dinosaur-sidebar

Totally Transparent Research is the embodiment of how we work at Securosis. It’s our core operating philosophy, our research policy, and a specific process. We initially developed it to help maintain objectivity while producing licensed research, but its benefits extend to all aspects of our business.

Going beyond Open Source Research, and a far cry from the traditional syndicated research model, we think it’s the best way to produce independent, objective, quality research.

Here’s how it works:

  • Content is developed ‘live’ on the blog. Primary research is generally released in pieces, as a series of posts, so we can digest and integrate feedback, making the end results much stronger than traditional “ivory tower” research.
  • Comments are enabled for posts. All comments are kept except for spam, personal insults of a clearly inflammatory nature, and completely off-topic content that distracts from the discussion. We welcome comments critical of the work, even if somewhat insulting to the authors. Really.
  • Anyone can comment, and no registration is required. Vendors or consultants with a relevant product or offering must properly identify themselves. While their comments won’t be deleted, the writer/moderator will “call out”, identify, and possibly ridicule vendors who fail to do so.
  • Vendors considering licensing the content are welcome to provide feedback, but it must be posted in the comments - just like everyone else. There is no back channel influence on the research findings or posts.
    Analysts must reply to comments and defend the research position, or agree to modify the content.
  • At the end of the post series, the analyst compiles the posts into a paper, presentation, or other delivery vehicle. Public comments/input factors into the research, where appropriate.
  • If the research is distributed as a paper, significant commenters/contributors are acknowledged in the opening of the report. If they did not post their real names, handles used for comments are listed. Commenters do not retain any rights to the report, but their contributions will be recognized.
  • All primary research will be released under a Creative Commons license. The current license is Non-Commercial, Attribution. The analyst, at their discretion, may add a Derivative Works or Share Alike condition.
  • Securosis primary research does not discuss specific vendors or specific products/offerings, unless used to provide context, contrast or to make a point (which is very very rare).
    Although quotes from published primary research (and published primary research only) may be used in press releases, said quotes may never mention a specific vendor, even if the vendor is mentioned in the source report. Securosis must approve any quote to appear in any vendor marketing collateral.
  • Final primary research will be posted on the blog with open comments.
  • Research will be updated periodically to reflect market realities, based on the discretion of the primary analyst. Updated research will be dated and given a version number.
    For research that cannot be developed using this model, such as complex principles or models that are unsuited for a series of blog posts, the content will be chunked up and posted at or before release of the paper to solicit public feedback, and provide an open venue for comments and criticisms.
  • In rare cases Securosis may write papers outside of the primary research agenda, but only if the end result can be non-biased and valuable to the user community to supplement industry-wide efforts or advances. A “Radically Transparent Research” process will be followed in developing these papers, where absolutely all materials are public at all stages of development, including communications (email, call notes).
    Only the free primary research released on our site can be licensed. We will not accept licensing fees on research we charge users to access.
  • All licensed research will be clearly labeled with the licensees. No licensed research will be released without indicating the sources of licensing fees. Again, there will be no back channel influence. We’re open and transparent about our revenue sources.

In essence, we develop all of our research out in the open, and not only seek public comments, but keep those comments indefinitely as a record of the research creation process. If you believe we are biased or not doing our homework, you can call us out on it and it will be there in the record. Our philosophy involves cracking open the research process, and using our readers to eliminate bias and enhance the quality of the work.

On the back end, here’s how we handle this approach with licensees:

  • Licensees may propose paper topics. The topic may be accepted if it is consistent with the Securosis research agenda and goals, but only if it can be covered without bias and will be valuable to the end user community.
  • Analysts produce research according to their own research agendas, and may offer licensing under the same objectivity requirements.
  • The potential licensee will be provided an outline of our research positions and the potential research product so they can determine if it is likely to meet their objectives.
  • Once the licensee agrees, development of the primary research content begins, following the Totally Transparent Research process as outlined above. At this point, there is no money exchanged.
  • Upon completion of the paper, the licensee will receive a release candidate to determine whether the final result still meets their needs.
  • If the content does not meet their needs, the licensee is not required to pay, and the research will be released without licensing or with alternate licensees.
  • Licensees may host and reuse the content for the length of the license (typically one year). This includes placing the content behind a registration process, posting on white paper networks, or translation into other languages. The research will always be hosted at Securosis for free without registration.

Here is the language we currently place in our research project agreements:

Content will be created independently of LICENSEE with no obligations for payment. Once content is complete, LICENSEE will have a 3 day review period to determine if the content meets corporate objectives. If the content is unsuitable, LICENSEE will not be obligated for any payment and Securosis is free to distribute the whitepaper without branding or with alternate licensees, and will not complete any associated webcasts for the declining LICENSEE. Content licensing, webcasts and payment are contingent on the content being acceptable to LICENSEE. This maintains objectivity while limiting the risk to LICENSEE. Securosis maintains all rights to the content and to include Securosis branding in addition to any licensee branding.

Even this process itself is open to criticism. If you have questions or comments, you can email us or comment on the blog.