Securosis

Research

Enterprise Key Managers: Technical Features, Part 2

Our last post covered two of the main technical features of an enterprise key manager: deployment and client access options. Today we will finish up with the rest of the technical features – including physical security, standards support, and a discussion of Hardware Security Modules (HSMs). Key Generation, Encryption, and Cryptographic Functions Due to their history, some key managers also offer cryptographic functions, such as: Key generation Encryption and decryption Key rotation Digital signing Key generation and rotation options are fairly common because they are important parts of the key management lifecycle; encryption and decryption are less common. If you are considering key managers that also perform cryptographic functions, you need to consider additional requirements, such as: How are keys generated and seeded? What kinds of keys and cryptographic functions are supported? (Take a look at the standards section a bit later). Performance: How many cryptographic operations of different types can be performed per second? But key generation isn’t necessarily required – assuming you only plan to use the tool to manage existing keys – perhaps in combination with separate HSMs. Physical Security and Hardening Key managers deployed as hardware appliances tend to include extensive physical security, hardening, and tamper resistance. Many of these are designed to meet government and financial industry standards. The products come in sealed enclosures designed detect attempts to open or modify them. They only include the external ports needed for core functions, without (for example) USB ports that could be used to insert malware. Most include one or more smart card ports to insert physical keys for certain administrative functions. For example, they could require two or three administrator keys to allow access to more-secure parts of the system (and yes, this means physically walking up to the key manager and inserting cards, even if the rest of administration is through a remote interface). All of these features combine to ensure that the key manager isn’t tampered with, and that data is still secure, even if the manager is physically stolen. But physical hardening isn’t always necessary – or we wouldn’t have software and virtual machine options. Those options are still very secure, and the choice all comes down to the deployment scenarios you need to support. The software and virtual appliances also include extensive security features – just nothing tied to the hardware enclosure or other specialized hardware. Anyone claiming physical security of an appliance should meet the FIPS 140-2 standard specified by the United States National Institute of Standards and Technology (NIST), or the regional equivalent. This includes requirements for both the software and hardware security of encryption tools. Encryption Standards and Platform Support As the saying goes, the wonderful thing about standards is there are so many to choose from. This is especially true in the world of encryption, which lives and breathes based on a wide array of standards. An enterprise key manager needs to handle keys from every major encryption algorithm, plus all the communications and exchange standards (and proprietary methods) to actually manage keys outside the system or service where they are stored. As a database, technically storing the keys for different standards is easy. On the other hand, supporting all the various ways of managing keys externally, for both open and proprietary products, is far more complex. And when you add in requirements to generate, rotate, or change keys, life gets even harder. Here are some of feature options for standards and platform support: Support for storing keys for all major cryptographic standards. Support for key communications standards and platforms to exchange keys, which may include a mix of proprietary implementations (e.g., a specific database platform) and open standards (e.g., the evolving Key Management Interoperability Protocol (KMIP)). Support for generating keys for common cryptographic standards. Support for rotating keys in common applications. It all comes down to having a key manager that supports the kinds of keys you need, on the types of systems that use them. System Maintenance and Deployment Features As enterprise tools, key managers need to support a basic set of core maintenance features and configuration options: Backup and Restore Losing an encryption key is worse than losing the data. When you lose the key, you effectively lose access to every version of that data that has ever been protected. And we try to avoid unencrypted copies of encrypted data, so you are likely to lose every version of the data, forever. Enterprise key managers need to handle backups and restores in an extremely secure manner. Usually this means encrypting the entire key database (including all access control & authorization rules) in backup. Additionally, backups are usually all encrypted with multiple or split keys which require more than one administrator to access or restore. Various products use different implementation strategies to handle secure incremental backups so you can back up the system regularly without destroying system performance. High Availability and Load Balancing Some key managers might only be deployed in a limited fashion, but generally these tools need to be available all the time, every time, sometimes to large volumes of traffic. Enterprise key managers should support both high availability and load balancing options to ensure they can meet demand. Another important high-availability option is key replication. This is the process of synchronizing keys across multiple key managers, sometimes in geographically separated data centers. Replication is always tricky and needs to scale effectively to avoid either loss of a key, or conflicts in case of a breakdown during rekeying or new key issuance. Hierarchical Deployments There are many situations in which you might use multiple key managers to handle keys for different application stacks or business-unit silos. Hierarchical deployment support enables you to create a “manager of managers” to enforce consistent policies across these individual-system boundaries and throughout distributed environments. For example, you might use multiple key managers in multiple data centers to generate new keys, but have those managers report back to a central master manager for auditing and reporting. Tokenization Tokenization is an

Share:
Read Post

Totally Transparent Research is the embodiment of how we work at Securosis. It’s our core operating philosophy, our research policy, and a specific process. We initially developed it to help maintain objectivity while producing licensed research, but its benefits extend to all aspects of our business.

Going beyond Open Source Research, and a far cry from the traditional syndicated research model, we think it’s the best way to produce independent, objective, quality research.

Here’s how it works:

  • Content is developed ‘live’ on the blog. Primary research is generally released in pieces, as a series of posts, so we can digest and integrate feedback, making the end results much stronger than traditional “ivory tower” research.
  • Comments are enabled for posts. All comments are kept except for spam, personal insults of a clearly inflammatory nature, and completely off-topic content that distracts from the discussion. We welcome comments critical of the work, even if somewhat insulting to the authors. Really.
  • Anyone can comment, and no registration is required. Vendors or consultants with a relevant product or offering must properly identify themselves. While their comments won’t be deleted, the writer/moderator will “call out”, identify, and possibly ridicule vendors who fail to do so.
  • Vendors considering licensing the content are welcome to provide feedback, but it must be posted in the comments - just like everyone else. There is no back channel influence on the research findings or posts.
    Analysts must reply to comments and defend the research position, or agree to modify the content.
  • At the end of the post series, the analyst compiles the posts into a paper, presentation, or other delivery vehicle. Public comments/input factors into the research, where appropriate.
  • If the research is distributed as a paper, significant commenters/contributors are acknowledged in the opening of the report. If they did not post their real names, handles used for comments are listed. Commenters do not retain any rights to the report, but their contributions will be recognized.
  • All primary research will be released under a Creative Commons license. The current license is Non-Commercial, Attribution. The analyst, at their discretion, may add a Derivative Works or Share Alike condition.
  • Securosis primary research does not discuss specific vendors or specific products/offerings, unless used to provide context, contrast or to make a point (which is very very rare).
    Although quotes from published primary research (and published primary research only) may be used in press releases, said quotes may never mention a specific vendor, even if the vendor is mentioned in the source report. Securosis must approve any quote to appear in any vendor marketing collateral.
  • Final primary research will be posted on the blog with open comments.
  • Research will be updated periodically to reflect market realities, based on the discretion of the primary analyst. Updated research will be dated and given a version number.
    For research that cannot be developed using this model, such as complex principles or models that are unsuited for a series of blog posts, the content will be chunked up and posted at or before release of the paper to solicit public feedback, and provide an open venue for comments and criticisms.
  • In rare cases Securosis may write papers outside of the primary research agenda, but only if the end result can be non-biased and valuable to the user community to supplement industry-wide efforts or advances. A “Radically Transparent Research” process will be followed in developing these papers, where absolutely all materials are public at all stages of development, including communications (email, call notes).
    Only the free primary research released on our site can be licensed. We will not accept licensing fees on research we charge users to access.
  • All licensed research will be clearly labeled with the licensees. No licensed research will be released without indicating the sources of licensing fees. Again, there will be no back channel influence. We’re open and transparent about our revenue sources.

In essence, we develop all of our research out in the open, and not only seek public comments, but keep those comments indefinitely as a record of the research creation process. If you believe we are biased or not doing our homework, you can call us out on it and it will be there in the record. Our philosophy involves cracking open the research process, and using our readers to eliminate bias and enhance the quality of the work.

On the back end, here’s how we handle this approach with licensees:

  • Licensees may propose paper topics. The topic may be accepted if it is consistent with the Securosis research agenda and goals, but only if it can be covered without bias and will be valuable to the end user community.
  • Analysts produce research according to their own research agendas, and may offer licensing under the same objectivity requirements.
  • The potential licensee will be provided an outline of our research positions and the potential research product so they can determine if it is likely to meet their objectives.
  • Once the licensee agrees, development of the primary research content begins, following the Totally Transparent Research process as outlined above. At this point, there is no money exchanged.
  • Upon completion of the paper, the licensee will receive a release candidate to determine whether the final result still meets their needs.
  • If the content does not meet their needs, the licensee is not required to pay, and the research will be released without licensing or with alternate licensees.
  • Licensees may host and reuse the content for the length of the license (typically one year). This includes placing the content behind a registration process, posting on white paper networks, or translation into other languages. The research will always be hosted at Securosis for free without registration.

Here is the language we currently place in our research project agreements:

Content will be created independently of LICENSEE with no obligations for payment. Once content is complete, LICENSEE will have a 3 day review period to determine if the content meets corporate objectives. If the content is unsuitable, LICENSEE will not be obligated for any payment and Securosis is free to distribute the whitepaper without branding or with alternate licensees, and will not complete any associated webcasts for the declining LICENSEE. Content licensing, webcasts and payment are contingent on the content being acceptable to LICENSEE. This maintains objectivity while limiting the risk to LICENSEE. Securosis maintains all rights to the content and to include Securosis branding in addition to any licensee branding.

Even this process itself is open to criticism. If you have questions or comments, you can email us or comment on the blog.