Securosis

Research

Token Vaults and Token Storage Tradeoffs

Use of tokenization continues to expand as customers look to simplify PCI-DSS compliance. With this increased adoption comes a lot of vendor positioning and puffery, as they attempt to differentiate their products in an increasingly competitive market. Unfortunately this competitive positioning often causes confusion among buyers, which is why I have spent the last couple mornings answering questions on FPE vs. Tokenization, and the difference between a token vault and a database. Lately most questions center on differentiating tokenization data vaults, with the expected confusion caused by vendor hyperbole. In this post I will define a token vault and shed some light on their pros and cons. My goal is to help you determine as a consumer whether vaults are something to consider when selecting a tokenization solution. A token vault is where you store issued tokens and the credit card numbers they represent. The storage location is called a “token vault”. The vault typically contains other information, but for this discussion just think of the token vault as a long list of CC#/token pairs. A new type of solution called ‘stateless’ or ‘vault-less’ tokenization is now available. These systems use derived tokens, which can be recalculated from some secret value, and those do not need to be stored in a database. Recent press hype claims that token vaults are bad and you should stay away from them. The primary argument is “you don’t want a relational database as a token vault” – or more specifically, “an Oracle database makes a slow and expensive token vault, and customers don’t want that”. Not so fast! The issue is not clear-cut. It’s not that token vaults are good or bad, but of course there are tradeoffs. Token vaults are fine for many types of customers, but not suitable for others. There are three issues at the heart of this debate: cost, scale, and performance. Let’s take a closer look at each of them. Cost: If you are going to use an Oracle, IBM DB2, or Microsoft SQL Server database for your token vault, you will need a license for the database. And token vaults must be redundant so you will need at least a couple licenses. If you want to ensure that your tokenization system can handle large bursts of transactions – such as holiday shopping periods – you will need hefty servers. Databases are priced based on server capacity, so these licenses can get very expensive. That said, many customers running in-house tokenization systems already have database site licenses, so for many customers this is not an issue. Scale: If you have data processing sites where token servers are dispersed across remote data centers that cannot guarantee highly reliable communications, synchronization of token vaults is a serious issue. You need to ensure that credit cards are not misused, that you have transactional consistency across all locations, and that no token is issued twice. With ‘vault-less’ tokenization synchronization is a non-issue. If consistency across a scaled tokenization deployment is critical derived tokens are incredibly attractive. But some non-derived token systems with token vaults get around this issue by pre-allocating token sequences; this ensures tokens are unique, and synchronization latency is not a concern. This is a critical advantage for very large credit card processors and merchants but not a universal requirement. Performance: Some token server designs require a check inside the token vault prior to completing every transaction, in order to ensure to avoid duplicate credit cards or tokens. This is especially true when a single token is used to represent multiple transactions or merchants (multi-use tokens). Unfortunately early tokenization solutions generally had poor database architectures. They did not provide efficient mechanisms of indexing token/CC# pairs for quick lookup. This is not a flaw in the databases themselves – it was a mistake made token vault designers as they laid out their data! As the number of tokens climbs into the tens or hundreds of millions, lookup operations can become unacceptably slow. Many customers have poor impressions of token vaults because their early implementations got this wrong. So very wrong. Today lookup speed is often not a problem – even for large databases – but customers need to verify that any given solutions meets their requirements during peak loads. For some customers a ‘vault-less’ tokenization solution is superior across all three axes. For other customers, with deep understanding of relational databases… security, performance, and scalability are just part of daily operations management. No vendor can credibly claim that databases or token vaults are universally the wrong choice, just like that nobody can claim that any non-relational solution is always the right choice. The decision comes down to the customer’s environment and IT operations. I am willing to bet that the vendors of these solutions will have some additional comments, so as always the comments section is open to anyone who wants to contribute. Share:

Share:
Read Post

Totally Transparent Research is the embodiment of how we work at Securosis. It’s our core operating philosophy, our research policy, and a specific process. We initially developed it to help maintain objectivity while producing licensed research, but its benefits extend to all aspects of our business.

Going beyond Open Source Research, and a far cry from the traditional syndicated research model, we think it’s the best way to produce independent, objective, quality research.

Here’s how it works:

  • Content is developed ‘live’ on the blog. Primary research is generally released in pieces, as a series of posts, so we can digest and integrate feedback, making the end results much stronger than traditional “ivory tower” research.
  • Comments are enabled for posts. All comments are kept except for spam, personal insults of a clearly inflammatory nature, and completely off-topic content that distracts from the discussion. We welcome comments critical of the work, even if somewhat insulting to the authors. Really.
  • Anyone can comment, and no registration is required. Vendors or consultants with a relevant product or offering must properly identify themselves. While their comments won’t be deleted, the writer/moderator will “call out”, identify, and possibly ridicule vendors who fail to do so.
  • Vendors considering licensing the content are welcome to provide feedback, but it must be posted in the comments - just like everyone else. There is no back channel influence on the research findings or posts.
    Analysts must reply to comments and defend the research position, or agree to modify the content.
  • At the end of the post series, the analyst compiles the posts into a paper, presentation, or other delivery vehicle. Public comments/input factors into the research, where appropriate.
  • If the research is distributed as a paper, significant commenters/contributors are acknowledged in the opening of the report. If they did not post their real names, handles used for comments are listed. Commenters do not retain any rights to the report, but their contributions will be recognized.
  • All primary research will be released under a Creative Commons license. The current license is Non-Commercial, Attribution. The analyst, at their discretion, may add a Derivative Works or Share Alike condition.
  • Securosis primary research does not discuss specific vendors or specific products/offerings, unless used to provide context, contrast or to make a point (which is very very rare).
    Although quotes from published primary research (and published primary research only) may be used in press releases, said quotes may never mention a specific vendor, even if the vendor is mentioned in the source report. Securosis must approve any quote to appear in any vendor marketing collateral.
  • Final primary research will be posted on the blog with open comments.
  • Research will be updated periodically to reflect market realities, based on the discretion of the primary analyst. Updated research will be dated and given a version number.
    For research that cannot be developed using this model, such as complex principles or models that are unsuited for a series of blog posts, the content will be chunked up and posted at or before release of the paper to solicit public feedback, and provide an open venue for comments and criticisms.
  • In rare cases Securosis may write papers outside of the primary research agenda, but only if the end result can be non-biased and valuable to the user community to supplement industry-wide efforts or advances. A “Radically Transparent Research” process will be followed in developing these papers, where absolutely all materials are public at all stages of development, including communications (email, call notes).
    Only the free primary research released on our site can be licensed. We will not accept licensing fees on research we charge users to access.
  • All licensed research will be clearly labeled with the licensees. No licensed research will be released without indicating the sources of licensing fees. Again, there will be no back channel influence. We’re open and transparent about our revenue sources.

In essence, we develop all of our research out in the open, and not only seek public comments, but keep those comments indefinitely as a record of the research creation process. If you believe we are biased or not doing our homework, you can call us out on it and it will be there in the record. Our philosophy involves cracking open the research process, and using our readers to eliminate bias and enhance the quality of the work.

On the back end, here’s how we handle this approach with licensees:

  • Licensees may propose paper topics. The topic may be accepted if it is consistent with the Securosis research agenda and goals, but only if it can be covered without bias and will be valuable to the end user community.
  • Analysts produce research according to their own research agendas, and may offer licensing under the same objectivity requirements.
  • The potential licensee will be provided an outline of our research positions and the potential research product so they can determine if it is likely to meet their objectives.
  • Once the licensee agrees, development of the primary research content begins, following the Totally Transparent Research process as outlined above. At this point, there is no money exchanged.
  • Upon completion of the paper, the licensee will receive a release candidate to determine whether the final result still meets their needs.
  • If the content does not meet their needs, the licensee is not required to pay, and the research will be released without licensing or with alternate licensees.
  • Licensees may host and reuse the content for the length of the license (typically one year). This includes placing the content behind a registration process, posting on white paper networks, or translation into other languages. The research will always be hosted at Securosis for free without registration.

Here is the language we currently place in our research project agreements:

Content will be created independently of LICENSEE with no obligations for payment. Once content is complete, LICENSEE will have a 3 day review period to determine if the content meets corporate objectives. If the content is unsuitable, LICENSEE will not be obligated for any payment and Securosis is free to distribute the whitepaper without branding or with alternate licensees, and will not complete any associated webcasts for the declining LICENSEE. Content licensing, webcasts and payment are contingent on the content being acceptable to LICENSEE. This maintains objectivity while limiting the risk to LICENSEE. Securosis maintains all rights to the content and to include Securosis branding in addition to any licensee branding.

Even this process itself is open to criticism. If you have questions or comments, you can email us or comment on the blog.