Securosis

Research

The CISO’s Guide to the Cloud: Adapting Security for Cloud Computing, Part 2

This is part four of a series. You can read part one, part two, or part three; or track the project on GitHub. As a reminder, this is the second half of our section on examples for adapting security to cloud computing. As before this isn’t an exhaustive list – just ideas to get you started. Intelligently Encrypt There are three reasons to encrypt data in the cloud, in order of their importance: Compliance. To protect data in backups, snapshots, and other portable copies or extracts. To protect data from cloud administrators. How you encrypt varies greatly, depending on where the data resides and which particular risks most concern you. For example many cloud providers encrypt object file storage or SaaS by default, but they manage the keys. This is often acceptable for compliance but doesn’t protect against a management plane breach. We wrote a paper on infrastructure encryption for cloud, from which we extracted some requirements which apply across encryption scenarios: If you are encrypting for security (as opposed to a compliance checkbox) you need to manage your own keys. If the vendor manages your keys your data may still be exposed in the event of a management plane compromise. Separate key management from cloud administration. Sure, we are all into DevOps and flattening management, but this is one situation where security should manage outside the cloud management plane. Use key managers that are as agile and elastic as the cloud. Like host security agents, your key manager needs to operate in an environment where servers appear and disappear automatically, and networks are virtual. Minimize SaaS encryption. The only way to encrypt data going to a SaaS provider is with a proxy, and encryption breaks the processing of data at the cloud provider. This reduces the utility of the service, so minimize which fields you need to encrypt. Or, better yet, trust your provider. Use secure cryptography agents and libraries when embedding encryption in hosts or IaaS and PaaS applications. The defaults for most crypto libraries used by developers are not secure. Either understand how to make them secure or use libraries designed from the ground up for security. Federate and Automate Identity Management Managing users and access in the cloud introduces two major headaches: Controlling access to external services without having to manage a separate set of users for each. Managing access to potentially thousands or tens of thousands of ephemeral virtual machines, some of which may only exist for a few hours. In the first case, and often the second, federated identity is the way to go: For external cloud services, especially SaaS, rely on SAML-based federated identity linked to your existing directory server. If you deal with many services this can become messy to manage and program yourself, so consider one of the identity management proxies or services designed specifically to tackle this problem. For access to your actual virtual servers, consider managing users with a dynamic privilege management agent designed for the cloud. Normally you embed SSH keys (or known Windows admin passwords) as part of instance initialization (the cloud controller handles this for you). This is highly problematic for privileged users at scale, and even straight directory server integration is often quite difficult. Specialized agents designed for cloud computing dynamically update users, privileges, and credentials at cloud speeds and scale. Adapt Network Security Networks are completely virtualized in cloud computing, although different platforms use different architectures and implementation mechanisms, complicating the situation. Despite that diversity there are consistent traits to focus on. The key issues come down to loss of visibility using normal techniques, and adapting to the dynamic nature of cloud computing. All public cloud providers disable networking sniffing, and that is an option on all private cloud platforms. A bad guy can’t hack a box and sniff the entire network, but you also can’t implement IDS and other network security like in traditional infrastructure. Even when you can place a physical box on the network hosting the cloud, you will miss traffic between instances on the same physical server, and highly dynamic network changes and instances appear and disappear too quickly to be treated like regular servers. You can sometimes use a virtual appliance instead, but unless the tool is designed to cloud specifications, even one that works in a virtual environment will crack in a cloud due to performance and functional limitations. While you can embed more host network security in the images your virtual machines are based on, the standard tools typically won’t work because they don’t know exactly where on the network they will pop up, nor what addresses they need to talk to. On a positive note, all cloud platforms include basic network security. Set your defaults properly, and every single server effectively comes with its own firewall. We recommend: Design a good baseline of Security Groups (the basic firewalls that secure the networking of each instance), and use tags or other mechanisms to automatically apply them based on server characteristics. A Security Group is essentially a firewall around every instance, offering compartmentalization that is extremely difficult to get in a traditional network. Use a host firewall, or host firewall management tool, designed for your cloud platform or provider. These connect to the cloud itself to pull metadata and configure themselves more dynamically than standard host firewalls. Also consider pushing more network security, including IDS and logging, into your instances. Prefer virtual network security appliances that support cloud APIs and are designed for the cloud platform or provider. For example, instead of forcing you to route all your virtual traffic through it as if you were on a physical network, the tool could distribute its own workload – perhaps even integrating with hypervisors. Take advantage of cloud APIs. It is very easy to pull every Security Group rule and then locate every instance. Combined with some additional basic tools you could then automate finding errors and omissions. Many cloud deployments do this today as a matter of course.

Share:
Read Post

Totally Transparent Research is the embodiment of how we work at Securosis. It’s our core operating philosophy, our research policy, and a specific process. We initially developed it to help maintain objectivity while producing licensed research, but its benefits extend to all aspects of our business.

Going beyond Open Source Research, and a far cry from the traditional syndicated research model, we think it’s the best way to produce independent, objective, quality research.

Here’s how it works:

  • Content is developed ‘live’ on the blog. Primary research is generally released in pieces, as a series of posts, so we can digest and integrate feedback, making the end results much stronger than traditional “ivory tower” research.
  • Comments are enabled for posts. All comments are kept except for spam, personal insults of a clearly inflammatory nature, and completely off-topic content that distracts from the discussion. We welcome comments critical of the work, even if somewhat insulting to the authors. Really.
  • Anyone can comment, and no registration is required. Vendors or consultants with a relevant product or offering must properly identify themselves. While their comments won’t be deleted, the writer/moderator will “call out”, identify, and possibly ridicule vendors who fail to do so.
  • Vendors considering licensing the content are welcome to provide feedback, but it must be posted in the comments - just like everyone else. There is no back channel influence on the research findings or posts.
    Analysts must reply to comments and defend the research position, or agree to modify the content.
  • At the end of the post series, the analyst compiles the posts into a paper, presentation, or other delivery vehicle. Public comments/input factors into the research, where appropriate.
  • If the research is distributed as a paper, significant commenters/contributors are acknowledged in the opening of the report. If they did not post their real names, handles used for comments are listed. Commenters do not retain any rights to the report, but their contributions will be recognized.
  • All primary research will be released under a Creative Commons license. The current license is Non-Commercial, Attribution. The analyst, at their discretion, may add a Derivative Works or Share Alike condition.
  • Securosis primary research does not discuss specific vendors or specific products/offerings, unless used to provide context, contrast or to make a point (which is very very rare).
    Although quotes from published primary research (and published primary research only) may be used in press releases, said quotes may never mention a specific vendor, even if the vendor is mentioned in the source report. Securosis must approve any quote to appear in any vendor marketing collateral.
  • Final primary research will be posted on the blog with open comments.
  • Research will be updated periodically to reflect market realities, based on the discretion of the primary analyst. Updated research will be dated and given a version number.
    For research that cannot be developed using this model, such as complex principles or models that are unsuited for a series of blog posts, the content will be chunked up and posted at or before release of the paper to solicit public feedback, and provide an open venue for comments and criticisms.
  • In rare cases Securosis may write papers outside of the primary research agenda, but only if the end result can be non-biased and valuable to the user community to supplement industry-wide efforts or advances. A “Radically Transparent Research” process will be followed in developing these papers, where absolutely all materials are public at all stages of development, including communications (email, call notes).
    Only the free primary research released on our site can be licensed. We will not accept licensing fees on research we charge users to access.
  • All licensed research will be clearly labeled with the licensees. No licensed research will be released without indicating the sources of licensing fees. Again, there will be no back channel influence. We’re open and transparent about our revenue sources.

In essence, we develop all of our research out in the open, and not only seek public comments, but keep those comments indefinitely as a record of the research creation process. If you believe we are biased or not doing our homework, you can call us out on it and it will be there in the record. Our philosophy involves cracking open the research process, and using our readers to eliminate bias and enhance the quality of the work.

On the back end, here’s how we handle this approach with licensees:

  • Licensees may propose paper topics. The topic may be accepted if it is consistent with the Securosis research agenda and goals, but only if it can be covered without bias and will be valuable to the end user community.
  • Analysts produce research according to their own research agendas, and may offer licensing under the same objectivity requirements.
  • The potential licensee will be provided an outline of our research positions and the potential research product so they can determine if it is likely to meet their objectives.
  • Once the licensee agrees, development of the primary research content begins, following the Totally Transparent Research process as outlined above. At this point, there is no money exchanged.
  • Upon completion of the paper, the licensee will receive a release candidate to determine whether the final result still meets their needs.
  • If the content does not meet their needs, the licensee is not required to pay, and the research will be released without licensing or with alternate licensees.
  • Licensees may host and reuse the content for the length of the license (typically one year). This includes placing the content behind a registration process, posting on white paper networks, or translation into other languages. The research will always be hosted at Securosis for free without registration.

Here is the language we currently place in our research project agreements:

Content will be created independently of LICENSEE with no obligations for payment. Once content is complete, LICENSEE will have a 3 day review period to determine if the content meets corporate objectives. If the content is unsuitable, LICENSEE will not be obligated for any payment and Securosis is free to distribute the whitepaper without branding or with alternate licensees, and will not complete any associated webcasts for the declining LICENSEE. Content licensing, webcasts and payment are contingent on the content being acceptable to LICENSEE. This maintains objectivity while limiting the risk to LICENSEE. Securosis maintains all rights to the content and to include Securosis branding in addition to any licensee branding.

Even this process itself is open to criticism. If you have questions or comments, you can email us or comment on the blog.