Security’s Future: Six Trends Changing the Face of Security
This is the second post in a series on the future of information security, which will be the basis for a white paper. You can leave feedback here as a blog comment, or even directly submit edits over at GitHub, where we are running the entire editing process in public. This is the initial draft, and I expect to trim the content by about 20%. The entire outline is available. The first post is available. The cloud and mobile computing are upending the foundational technological principles of delivery and consumption, and at the same time we see six key trends within security itself which promise to completely transform its practice over time. These aren’t disruptive innovations so much as disruptive responses and incremental advances that better align us with where the world is heading. When we align these trends with advances in and adoption of cloud and mobile computing, we can picture how security will look over the next seven to ten years. Hypersegregation We have always known the dramatic security benefits of effective compartmentalization, but implementation was typically costly and often negatively impacted other business needs. This is changing on multiple fronts as we gain the ability to heavily segregate, by default, with minimal negative impact. Flat networks and operating systems will not only soon be an artifact of the past, but difficult to even implement. Hypersegregation makes it much more difficult for an attacker to extend their footprint once they gain access to a network or system, and increases the likelihood of detection. Most major cloud computing platforms provide cloud-layer software firewalls, by default, around every running virtual machine. In cloud infrastructure, every single server is firewalled off from every other one by default. The equivalent in a traditional environment would be either a) host-based firewalls on every host, of every system type, with easily and immediately managed policies across all devices, or b) putting a physical firewall in front of every host on the network, which travels with the host if and when it moves. These basic firewalls are managed via APIs, and by default even segregate every server from every other server – even on the same subnet. There is no such thing as a flat network when you deploy onto Infrastructure as a Service, unless you work hard to reproduce the less secure architecture. This segregation has the potential to expand into non-cloud networks thanks to Software Defined Networking, making hypersegregation the default in any new infrastructure. We also see hypersegregation working extremely effectively in operating systems. Apple’s iOS sandboxes every application by default, creating another kind of ‘firewalls’ inside the operating system. This is a major contributor to iOS’s complete lack of widespread malware – going back to the iPhone debut seven years ago. Apple now extends similar protection to desktop and laptop computers by sandboxing all apps in the Mac App Store. Google sandboxes all tabs and plugins in the Chrome web browser. Microsoft sandboxes much of Internet Explorer and supports application level sandboxes. Third-party tools extend sandboxing in operating systems through virtualization technology. Even application architectures themselves are migrating toward further segregating and isolating application functions to improve resiliency and address security. There are practical examples today of task and process level segregation, enforcing security policy on actions by whitelisting. The end result is networks, platforms, and applications that are more resistant to attack, and limit the damage of attackers even when they succeed. This dramatically raises the overall costs of attacks while reducing the necessity to address every vulnerability immediately or face exploitation. Operationalization of Security Security, even today, still performs many rote tasks that don’t actually require security expertise. For cost and operational efficiency reasons, we see organizations beginning to hand off these tasks to Operations to allow security professionals to focus on what they are best at. This is augmented by increasing automation capabilities – not that we can ever eliminate the need for humans. We already see patch and antivirus management being handled by non-security teams. Some organizations now extend this to firewall management and even low-level incident management. Concurrently we see the rise of security automation to handle more rote-level tasks and even some higher-order functions – especially in assessment and configuration management. We expect Security to divest itself of many responsibilities for network security and monitoring, manual assessment, identity and access management, application security, and more. This, in turn, frees up security professionals for tasks that require more security expertise – such as incident response, security architecture, security analytics, and audit/assessment. Security professionals will play a greater role as subject matter experts, as most repetitive security tasks become embedded into day-to-day operations, rather than being a non-operations function. Incident Response One of the benefits of the increasing operationalization of security is freeing up resources for incident response. Attackers continue to improve as technology further embeds itself into our lives and economies. Security professionals have largely recognized and accepted that it is impossible to completely stop attacks, so we need greater focus on detecting and responding to incidents. This is beginning to shift security spending toward IR tools and teams, especially as we adopt the cloud and platforms that reduce our need for certain traditional infrastructure security tools. Leading organizations today are already shifting more and more resources to incident detection and response. To react faster and better, as we say here. Not simply having an incident response plan, or even tools, but conceptually re-prioritizing and re-architecting entire security programs – to focus as much or more on detection and response as on pure defense. We will finally use all those big screens hanging in the SOC to do more than impress prospects and visitors. A focus on incident response, on more rapidly detecting and responding to attacker-driven incidents, will outperform our current security model – which is overly focused on checklists and vulnerabilities – affecting everything from technology decisions to budgeting and staffing. Software Defined Security Today security largely consists of boxes and agents distinct from the infrastructure we protect. They won’t go away, but the cloud and increasingly available APIs