TI+IR/M: Threat Intelligence + Data Collection = Responding Better
Our last post defined what is needed to Really Respond Faster, so now let’s peel back the next layer of the onion to delve into collecting data that will be useful for investigation, both internally and externally. This starts with gathering threat intelligence to cover the external side. It also involves a systematic effort to gather forensic information from networks and endpoints while leveraging existing security information sources including events, logs, and configurations. External View: Integrating Threat Intel In the last post we described the kinds of threat intelligence at your disposal and how they can assist your response. But that doesn’t explain how you can gather this information or where to put it so it’s useful when you are knee-deep in response. First let’s discuss the aggregation point. In Early Warning System we described a platform to aggregate threat intelligence. Those concepts are still relevant to what you need the platform to do. You need the platform to aggregate third-party intelligence feeds, and be able to scan your environment for indicators to find potentially compromised devices. To meet these goals a few major capabilities stand out: Open: The first job of any platform is to facilitate and accelerate investigation so you need the ability to aggregate threat intelligence and other security data quickly, easily, and flexibly. Intelligence feeds are typically just data (often XML), and increasingly distributed in industry-standard formats such as STIX – making integration relatively straightforward. Scalable: You will collect a lot of data during investigation, so scalability is essential. Keep in mind the difference between data scalability (the amount of stuff you can store) and computational scalability (your ability to analyze and search the collected data). Flexible search: Investigations still involve quite a bit of art, rather than being pure formal science. As tools improve and integrated threat intelligence helps narrow down targets for investigation, you will be less reliant on forensic ‘artists’. But you will always be mining collected data and searching for attack indications, regardless of the capabilities of the person with their hands on the keyboard. So your investigation platform must make it easy to search all your data sources, and then identify assets at risk based on what you found. The key to making this entire process run is automation. Yes, we at Securosis talk about automation a whole lot these days, and there is a reason for that. Things are happening too quickly for you to do much of anything manually, especially in the heat of an investigation. You need the ability to pull threat intelligence in a machine-readable format, and then pump it into an analysis platform without human intervention. Simple, right? So let’s dig into the threat intelligence sources to provide perspective on how to integrate that data into your platform. Compromised devices: The most actionable intelligence you can get is still a clear indication of compromised devices. This provides an excellent place to begin your investigation and manage your response. There are many ways you might conclude a device is compromised. The first is by seeing clear indicators of command and control traffic in the device’s network traffic, such as DNS requests whose frequency and content indicate a domain generating algorithm (DGA) for finding botnet controllers. Monitoring traffic from the device can also show files or other sensitive data being transmitted by the device, indicating exfiltration or (via network traffic analysis) a remote access trojan. Malware indicators: As described in our Malware Analysis Quant research, you can build a lab and perform both static and dynamic analysis of malware samples to identify specific indicators of how the malware compromises devices. This is not for the faint of heart – thorough and useful analysis requires significant investment, resources, and expertise. The good news is that numerous commercial services now offer those indicators in a format you can use to easily search through collected security data. Adversary networks: Using IP reputation data broken down into groups of adversaries can help you determine the extent of compromise. If during your initial investigation you find malware typically associated with Adversary A, you can then look for traffic going to networks associated with that adversary. Effective and efficient response requires focus, so knowing which of your compromised devices may have been compromised in a single attack helps you isolate and dig deeper into that attack. Given the demands of gathering sufficient information to analyze, and the challenge of detecting and codifying appropriate patterns and indicators of compromise, most organizations look for a commercial provider to develop and provide this threat intelligence. It is typically packaged as a feed for direct integration into incident response/monitoring platforms. Wrapping it all together we have the process map below. The map encompasses profiling the adversary as discussed in the last post, collecting intelligence, analyzing threats, and then integrating threat intelligence into the incident response process. Internal View: Collecting Forensics The other side of the coin is making sure you have sufficient information about what’s happening in your environment. We have researched selecting and deploying SIEM and Log Management extensively, and that information tends to be the low-hanging fruit for populating your internal security data repository. To aid investigation you should monitor the following sources (preferably continuously): Perimeter networks and devices: The bad guys tend to be out there, meaning they need to cross your perimeter to achieve their mission. So look for issues on devices between them and their targets. Identity: Who is as important as what, so analyze access to specific resources – especially within a privileged user context. Servers: We are big fans of anomaly detection, configuration assessment, and whitelisting on critical servers such as domain controllers and app servers, to alert you to funky stuff to investigate at the server level. Databases: Likewise, correlating database anomalies against other types of traffic (such as reconnaissance and network exfiltration) can indicate a breach in progress. Better to know that before your credit card brand notifies you. File integrity: Most attacks change key system files, so by