Securosis

Research

TI+IR/M: Threat Intelligence + Data Collection = Responding Better

Our last post defined what is needed to Really Respond Faster, so now let’s peel back the next layer of the onion to delve into collecting data that will be useful for investigation, both internally and externally. This starts with gathering threat intelligence to cover the external side. It also involves a systematic effort to gather forensic information from networks and endpoints while leveraging existing security information sources including events, logs, and configurations. External View: Integrating Threat Intel In the last post we described the kinds of threat intelligence at your disposal and how they can assist your response. But that doesn’t explain how you can gather this information or where to put it so it’s useful when you are knee-deep in response. First let’s discuss the aggregation point. In Early Warning System we described a platform to aggregate threat intelligence. Those concepts are still relevant to what you need the platform to do. You need the platform to aggregate third-party intelligence feeds, and be able to scan your environment for indicators to find potentially compromised devices. To meet these goals a few major capabilities stand out: Open: The first job of any platform is to facilitate and accelerate investigation so you need the ability to aggregate threat intelligence and other security data quickly, easily, and flexibly. Intelligence feeds are typically just data (often XML), and increasingly distributed in industry-standard formats such as STIX – making integration relatively straightforward. Scalable: You will collect a lot of data during investigation, so scalability is essential. Keep in mind the difference between data scalability (the amount of stuff you can store) and computational scalability (your ability to analyze and search the collected data). Flexible search: Investigations still involve quite a bit of art, rather than being pure formal science. As tools improve and integrated threat intelligence helps narrow down targets for investigation, you will be less reliant on forensic ‘artists’. But you will always be mining collected data and searching for attack indications, regardless of the capabilities of the person with their hands on the keyboard. So your investigation platform must make it easy to search all your data sources, and then identify assets at risk based on what you found. The key to making this entire process run is automation. Yes, we at Securosis talk about automation a whole lot these days, and there is a reason for that. Things are happening too quickly for you to do much of anything manually, especially in the heat of an investigation. You need the ability to pull threat intelligence in a machine-readable format, and then pump it into an analysis platform without human intervention. Simple, right? So let’s dig into the threat intelligence sources to provide perspective on how to integrate that data into your platform. Compromised devices: The most actionable intelligence you can get is still a clear indication of compromised devices. This provides an excellent place to begin your investigation and manage your response. There are many ways you might conclude a device is compromised. The first is by seeing clear indicators of command and control traffic in the device’s network traffic, such as DNS requests whose frequency and content indicate a domain generating algorithm (DGA) for finding botnet controllers. Monitoring traffic from the device can also show files or other sensitive data being transmitted by the device, indicating exfiltration or (via network traffic analysis) a remote access trojan. Malware indicators: As described in our Malware Analysis Quant research, you can build a lab and perform both static and dynamic analysis of malware samples to identify specific indicators of how the malware compromises devices. This is not for the faint of heart – thorough and useful analysis requires significant investment, resources, and expertise. The good news is that numerous commercial services now offer those indicators in a format you can use to easily search through collected security data. Adversary networks: Using IP reputation data broken down into groups of adversaries can help you determine the extent of compromise. If during your initial investigation you find malware typically associated with Adversary A, you can then look for traffic going to networks associated with that adversary. Effective and efficient response requires focus, so knowing which of your compromised devices may have been compromised in a single attack helps you isolate and dig deeper into that attack. Given the demands of gathering sufficient information to analyze, and the challenge of detecting and codifying appropriate patterns and indicators of compromise, most organizations look for a commercial provider to develop and provide this threat intelligence. It is typically packaged as a feed for direct integration into incident response/monitoring platforms. Wrapping it all together we have the process map below. The map encompasses profiling the adversary as discussed in the last post, collecting intelligence, analyzing threats, and then integrating threat intelligence into the incident response process. Internal View: Collecting Forensics The other side of the coin is making sure you have sufficient information about what’s happening in your environment. We have researched selecting and deploying SIEM and Log Management extensively, and that information tends to be the low-hanging fruit for populating your internal security data repository. To aid investigation you should monitor the following sources (preferably continuously): Perimeter networks and devices: The bad guys tend to be out there, meaning they need to cross your perimeter to achieve their mission. So look for issues on devices between them and their targets. Identity: Who is as important as what, so analyze access to specific resources – especially within a privileged user context. Servers: We are big fans of anomaly detection, configuration assessment, and whitelisting on critical servers such as domain controllers and app servers, to alert you to funky stuff to investigate at the server level. Databases: Likewise, correlating database anomalies against other types of traffic (such as reconnaissance and network exfiltration) can indicate a breach in progress. Better to know that before your credit card brand notifies you. File integrity: Most attacks change key system files, so by

Share:
Read Post

Totally Transparent Research is the embodiment of how we work at Securosis. It’s our core operating philosophy, our research policy, and a specific process. We initially developed it to help maintain objectivity while producing licensed research, but its benefits extend to all aspects of our business.

Going beyond Open Source Research, and a far cry from the traditional syndicated research model, we think it’s the best way to produce independent, objective, quality research.

Here’s how it works:

  • Content is developed ‘live’ on the blog. Primary research is generally released in pieces, as a series of posts, so we can digest and integrate feedback, making the end results much stronger than traditional “ivory tower” research.
  • Comments are enabled for posts. All comments are kept except for spam, personal insults of a clearly inflammatory nature, and completely off-topic content that distracts from the discussion. We welcome comments critical of the work, even if somewhat insulting to the authors. Really.
  • Anyone can comment, and no registration is required. Vendors or consultants with a relevant product or offering must properly identify themselves. While their comments won’t be deleted, the writer/moderator will “call out”, identify, and possibly ridicule vendors who fail to do so.
  • Vendors considering licensing the content are welcome to provide feedback, but it must be posted in the comments - just like everyone else. There is no back channel influence on the research findings or posts.
    Analysts must reply to comments and defend the research position, or agree to modify the content.
  • At the end of the post series, the analyst compiles the posts into a paper, presentation, or other delivery vehicle. Public comments/input factors into the research, where appropriate.
  • If the research is distributed as a paper, significant commenters/contributors are acknowledged in the opening of the report. If they did not post their real names, handles used for comments are listed. Commenters do not retain any rights to the report, but their contributions will be recognized.
  • All primary research will be released under a Creative Commons license. The current license is Non-Commercial, Attribution. The analyst, at their discretion, may add a Derivative Works or Share Alike condition.
  • Securosis primary research does not discuss specific vendors or specific products/offerings, unless used to provide context, contrast or to make a point (which is very very rare).
    Although quotes from published primary research (and published primary research only) may be used in press releases, said quotes may never mention a specific vendor, even if the vendor is mentioned in the source report. Securosis must approve any quote to appear in any vendor marketing collateral.
  • Final primary research will be posted on the blog with open comments.
  • Research will be updated periodically to reflect market realities, based on the discretion of the primary analyst. Updated research will be dated and given a version number.
    For research that cannot be developed using this model, such as complex principles or models that are unsuited for a series of blog posts, the content will be chunked up and posted at or before release of the paper to solicit public feedback, and provide an open venue for comments and criticisms.
  • In rare cases Securosis may write papers outside of the primary research agenda, but only if the end result can be non-biased and valuable to the user community to supplement industry-wide efforts or advances. A “Radically Transparent Research” process will be followed in developing these papers, where absolutely all materials are public at all stages of development, including communications (email, call notes).
    Only the free primary research released on our site can be licensed. We will not accept licensing fees on research we charge users to access.
  • All licensed research will be clearly labeled with the licensees. No licensed research will be released without indicating the sources of licensing fees. Again, there will be no back channel influence. We’re open and transparent about our revenue sources.

In essence, we develop all of our research out in the open, and not only seek public comments, but keep those comments indefinitely as a record of the research creation process. If you believe we are biased or not doing our homework, you can call us out on it and it will be there in the record. Our philosophy involves cracking open the research process, and using our readers to eliminate bias and enhance the quality of the work.

On the back end, here’s how we handle this approach with licensees:

  • Licensees may propose paper topics. The topic may be accepted if it is consistent with the Securosis research agenda and goals, but only if it can be covered without bias and will be valuable to the end user community.
  • Analysts produce research according to their own research agendas, and may offer licensing under the same objectivity requirements.
  • The potential licensee will be provided an outline of our research positions and the potential research product so they can determine if it is likely to meet their objectives.
  • Once the licensee agrees, development of the primary research content begins, following the Totally Transparent Research process as outlined above. At this point, there is no money exchanged.
  • Upon completion of the paper, the licensee will receive a release candidate to determine whether the final result still meets their needs.
  • If the content does not meet their needs, the licensee is not required to pay, and the research will be released without licensing or with alternate licensees.
  • Licensees may host and reuse the content for the length of the license (typically one year). This includes placing the content behind a registration process, posting on white paper networks, or translation into other languages. The research will always be hosted at Securosis for free without registration.

Here is the language we currently place in our research project agreements:

Content will be created independently of LICENSEE with no obligations for payment. Once content is complete, LICENSEE will have a 3 day review period to determine if the content meets corporate objectives. If the content is unsuitable, LICENSEE will not be obligated for any payment and Securosis is free to distribute the whitepaper without branding or with alternate licensees, and will not complete any associated webcasts for the declining LICENSEE. Content licensing, webcasts and payment are contingent on the content being acceptable to LICENSEE. This maintains objectivity while limiting the risk to LICENSEE. Securosis maintains all rights to the content and to include Securosis branding in addition to any licensee branding.

Even this process itself is open to criticism. If you have questions or comments, you can email us or comment on the blog.