Securosis

Research

Applied Threat Intelligence: Use Case #3, Preventative Controls

So far, as we have looked to apply threat intelligence to your security processes, we have focused on detection/security monitoring and investigation/incident response functions. Let’s jump backwards in the attack chain to take a look at how threat intelligence can be used in preventative controls within your environment. By ‘preventative’ we mean any control that is in the flow, and can therefore prevent attacks. These include: Network Security Devices: These are typically firewalls (including next-generation models), and intrusion prevention systems. But you can also include devices such as web application firewalls, which operate at different levels in the stack but are inline and can thus block attacks. Content Security Devices/Services: Web and email filters can also function as preventative controls because they inspect traffic as it passes through and can enforce policies/block attacks. Endpoint Security Technologies: Protecting an endpoint is a broad category, and can include traditional endpoint protection (anti-malware) and new-fangled advanced endpoint protection technologies such as isolation and advanced heuristics. We described the current state of endpoint security in our Advanced Endpoint Protection paper, so check that out for detail on the technologies. TI + Preventative Controls Once again we consider how to apply TI through a process map. So we dust off the very complicated Network Security Operations process map from NSO Quant, simplify a bit, and add threat intelligence. Rule Management The process starts with managing the rules that underlie the preventative controls. This includes attack signatures and the policies & rules that control attack response. The process trigger will probably be a service request (open this port for that customer, etc.), signature update, policy update, or threat intelligence alert (drop traffic from this set of botnet IPs). We will talk more about threat intel sources a bit later. Policy Review: Given the infinite variety of potential monitoring and blocking policies available on preventative controls, keeping the rules current is critical. Keep the severe performance hit (and false positive implications) of deploying too many policies in mind as you decide what policies to deploy. Define/Update/Document Rules: This next step involves defining the depth and breadth of the security policies, including the actions (block, alert, log, etc.) to take if an attack is detected – whether via rule violation, signature trigger, threat intelligence, or another method. Initial policy deployment should include a Q/A process to ensure no rules impair critical applications’ ability to communicate either internally or externally. Write/Acquire New Rules: Locate the signature, acquire it, and validate the integrity of the signature file(s). These days most signatures are downloaded, so this ensures the download completed properly. Perform an initial evaluation of each signature to determine whether it applies within your organization, what type of attack it detects, and whether it is relevant in your environment. This initial prioritization phase determines the nature of each new/updated signature, its relevance and general priority for your organization, and any possible workarounds. Change Management In this phase rule additions, changes, updates, and deletions are handled. Process Change Request: Based on the trigger within the Content Management process, a change to the preventative control(s) is requested. The change’s priority is based on the nature of the rule update and risk of the relevant attack. Then build out a deployment schedule based on priority, scheduled maintenance windows, and other factors. This usually involves the participation of multiple stakeholders – ranging from application, network, and system owners to business unit representatives if downtime or changes to application use models are anticipated. Test and Approve: This step includes development of test criteria, performance of any required testing, analysis of results, and release approval of the signature/rule change once it meets your requirements. This is critical if you are looking to automate rules based on threat intelligence, as we will discuss later in the post. Changes may be implemented in log-only mode to observe their impact before committing to blocking mode in production (critical for threat intelligence-based rules). With an understanding of the impact of the change(s), the request is either approved or denied. Deploy: Prepare the target devices for deployment, deliver the change, and return them to normal operation. Verify that changes were properly deployed, including successful installation and operation. This might include use of vulnerability assessment tools or application test scripts to ensure no disruption to production systems. Audit/Validate: Part of the full process of making the change is not only having the Operations team confirm it during the Deploy step, but also having another entity (internal or external, but not part of Ops) audit it to provide separation of duties. This involves validating the change to ensure the policies were properly updated and matching it against a specific request. This closes the loop and ensures there is a documentation trail for every change. Depending on how automated you want this process to be this step may not apply. Monitor Issues/Tune: The final step of the change management process involves a burn-in period when each rule change is scrutinized for unintended consequences such as unacceptable performance impact, false positives, security exposures, or undesirable application impact. For threat intelligence-based dynamic rules false positives are the issue of most concern. The testing process in the Test and Approve step is intended to minimize these issues, but there are variances between test environments and production networks so we recommend a probationary period for each new or updated rule, just in case. Automatic Deployment The promise of applied threat intelligence is to have rules updated dynamically per intelligence gleaned from outside your organization. It adds a bit of credibility to “getting ahead of the threat”. You can never really get ‘ahead’ of the threat, but certainly can prepare before it hits you. But security professionals need to accustom themselves to updating rules from data. We joke in conference talks about how security folks hate the idea of Skynet tweaking their defenses. There is still substantial resistance to updating access control rules on firewalls or IPS blocking actions without human intervention. But we expect this resistance to ebb

Share:
Read Post

Totally Transparent Research is the embodiment of how we work at Securosis. It’s our core operating philosophy, our research policy, and a specific process. We initially developed it to help maintain objectivity while producing licensed research, but its benefits extend to all aspects of our business.

Going beyond Open Source Research, and a far cry from the traditional syndicated research model, we think it’s the best way to produce independent, objective, quality research.

Here’s how it works:

  • Content is developed ‘live’ on the blog. Primary research is generally released in pieces, as a series of posts, so we can digest and integrate feedback, making the end results much stronger than traditional “ivory tower” research.
  • Comments are enabled for posts. All comments are kept except for spam, personal insults of a clearly inflammatory nature, and completely off-topic content that distracts from the discussion. We welcome comments critical of the work, even if somewhat insulting to the authors. Really.
  • Anyone can comment, and no registration is required. Vendors or consultants with a relevant product or offering must properly identify themselves. While their comments won’t be deleted, the writer/moderator will “call out”, identify, and possibly ridicule vendors who fail to do so.
  • Vendors considering licensing the content are welcome to provide feedback, but it must be posted in the comments - just like everyone else. There is no back channel influence on the research findings or posts.
    Analysts must reply to comments and defend the research position, or agree to modify the content.
  • At the end of the post series, the analyst compiles the posts into a paper, presentation, or other delivery vehicle. Public comments/input factors into the research, where appropriate.
  • If the research is distributed as a paper, significant commenters/contributors are acknowledged in the opening of the report. If they did not post their real names, handles used for comments are listed. Commenters do not retain any rights to the report, but their contributions will be recognized.
  • All primary research will be released under a Creative Commons license. The current license is Non-Commercial, Attribution. The analyst, at their discretion, may add a Derivative Works or Share Alike condition.
  • Securosis primary research does not discuss specific vendors or specific products/offerings, unless used to provide context, contrast or to make a point (which is very very rare).
    Although quotes from published primary research (and published primary research only) may be used in press releases, said quotes may never mention a specific vendor, even if the vendor is mentioned in the source report. Securosis must approve any quote to appear in any vendor marketing collateral.
  • Final primary research will be posted on the blog with open comments.
  • Research will be updated periodically to reflect market realities, based on the discretion of the primary analyst. Updated research will be dated and given a version number.
    For research that cannot be developed using this model, such as complex principles or models that are unsuited for a series of blog posts, the content will be chunked up and posted at or before release of the paper to solicit public feedback, and provide an open venue for comments and criticisms.
  • In rare cases Securosis may write papers outside of the primary research agenda, but only if the end result can be non-biased and valuable to the user community to supplement industry-wide efforts or advances. A “Radically Transparent Research” process will be followed in developing these papers, where absolutely all materials are public at all stages of development, including communications (email, call notes).
    Only the free primary research released on our site can be licensed. We will not accept licensing fees on research we charge users to access.
  • All licensed research will be clearly labeled with the licensees. No licensed research will be released without indicating the sources of licensing fees. Again, there will be no back channel influence. We’re open and transparent about our revenue sources.

In essence, we develop all of our research out in the open, and not only seek public comments, but keep those comments indefinitely as a record of the research creation process. If you believe we are biased or not doing our homework, you can call us out on it and it will be there in the record. Our philosophy involves cracking open the research process, and using our readers to eliminate bias and enhance the quality of the work.

On the back end, here’s how we handle this approach with licensees:

  • Licensees may propose paper topics. The topic may be accepted if it is consistent with the Securosis research agenda and goals, but only if it can be covered without bias and will be valuable to the end user community.
  • Analysts produce research according to their own research agendas, and may offer licensing under the same objectivity requirements.
  • The potential licensee will be provided an outline of our research positions and the potential research product so they can determine if it is likely to meet their objectives.
  • Once the licensee agrees, development of the primary research content begins, following the Totally Transparent Research process as outlined above. At this point, there is no money exchanged.
  • Upon completion of the paper, the licensee will receive a release candidate to determine whether the final result still meets their needs.
  • If the content does not meet their needs, the licensee is not required to pay, and the research will be released without licensing or with alternate licensees.
  • Licensees may host and reuse the content for the length of the license (typically one year). This includes placing the content behind a registration process, posting on white paper networks, or translation into other languages. The research will always be hosted at Securosis for free without registration.

Here is the language we currently place in our research project agreements:

Content will be created independently of LICENSEE with no obligations for payment. Once content is complete, LICENSEE will have a 3 day review period to determine if the content meets corporate objectives. If the content is unsuitable, LICENSEE will not be obligated for any payment and Securosis is free to distribute the whitepaper without branding or with alternate licensees, and will not complete any associated webcasts for the declining LICENSEE. Content licensing, webcasts and payment are contingent on the content being acceptable to LICENSEE. This maintains objectivity while limiting the risk to LICENSEE. Securosis maintains all rights to the content and to include Securosis branding in addition to any licensee branding.

Even this process itself is open to criticism. If you have questions or comments, you can email us or comment on the blog.