Securosis

Research

Network-based Threat Detection: Operationalizing Detection

As we wrap up our Network-based Threat Detection series, we have already covered why prevention isn’t good enough and how to find indications that an attack is happening, based on what you see on the network. Our last post worked through adding context to collected data to allow some measure of prioritization for alerts. To finish things off we will discuss additional context and making alerts operationally useful. Leveraging Threat Intelligence for Detection This analysis is still restricted to your organization. You are gathering data from your networks and adding context from your enterprise systems. Which is great but not enough. Factoring data from other organizations into your analysis can help you refine it and prioritize your activities more effectively. Yes, we are talking about using threat intelligence in your detection process. For prevention, threat intel can be useful to decide which external sites should be blocked on your egress filters, based on reputation and possibly adversary analysis. This approach helps ensure devices on your network don’t communicate with known malware sites, bot networks, phishing sites, watering hole servers, or other places on the Internet you want nothing to do with. Recent conversations with practitioners indicate much greater willingness to block traffic – so long as they have confidence in the alerts. But this series isn’t called Network-based Threat Prevention, so how does threat intelligence help with detection? TI provides a view of network traffic patterns used in attacks on other organizations. Learning about these patterns enables you to look for them (Domain Generating Algorithms, for example) within your own environment. You might also see indicators of internal reconnaissance or lateral movement typically used by certain adversaries, and use them to identify attacks in process. Watching for bulk file transfers, for example, or types of file encryption known to be used by particular crime networks, could yield insight into exfiltration activities. Like the burden of proof is far lower in civil litigation than in criminal litigation, the bar for useful accuracy is far lower in detection modes than in prevention. When you are blocking network traffic for prevention, you had better be right. Users get cranky when you block legitimate network sessions, so you will be conservative about what you block. That means you will inevitably miss something – the dreaded false negative, a legitimate attack. But firing an alert provides more leeway, so you can be a bit less rigid. That said, you still want to be close – false positives are still very expensive. This is where the approach mapped out in our last post comes into play. If you see something that looks like an attack based on external threat intel, you apply the same contextual filters to validate and prioritize. Retrospection What happens when you don’t know an attack is actually an attack when the traffic enters your network? This happens every time a truly new attack vector emerges. Obviously you don’t know about it, so your network controls will miss it and your security monitors won’t know what to look for. No one has seen it yet, so it doesn’t show up in threat intel feeds. So you miss, but that’s life. Everyone misses new attacks. The question is: how long do you miss it? One of the most powerful concepts in threat intelligence is the ability to use newly discovered indicators and retrospectively look through security data to see if an attack has already hit you. When you get a new threat intel indicator you can search your network telemetry (using your fancy analytics engine) to see if you’ve seen it before. This isn’t optimal because you already missed. But it’s much better than waiting for an attacker to take the next step in the attack chain. In the security game nothing is perfect. But leveraging the hard-won experience of other organizations makes your own detection faster and more accurate. A Picture Is Worth a Thousand Words At this point you have alerts, and perhaps some measure of prioritization for them. But one of the most difficult tasks is deciding how to navigate through the hundreds or thousands of alerts that happen in networks at scale. That’s where visualization techniques come into play. A key criterion for choosing a detection offering is getting information presented in a way that makes sense to you and will work in your organization’s culture. Some like the traditional user experience, which looks like a Top 10 list of potentially compromised devices, with the grid showing details of the alert. Another way to visualize detection data is as a heat map showing devices and potential risks visually, offering drill-down into indicators and alert causes. There is no right or wrong here – it is just a question of what will be most effective for your security operations team. Operationalizing Detection As compelling as network-based threat detection is conceptually, a bunch of integration needs to happen before you can provide value and increase your security program’s effectiveness. There are two sides to integration: data you need for detection, and information about alerts that is sent to other operational systems. For the former, these connections to identity systems and external threat intelligence drive analytics for detection. The latter includes the ability to pump the alert and contextual data to your SIEM or other alerting system to kick off your investigation process. If you get comfortable enough with your detection results you can even configure workarounds such as IPS blocking rules based on these alerts. You might prevent compromised devices from doing anything, blocking C&C traffic, or block exfiltration traffic. As described above, prevention demands minimization of false positives, but disrupting attackers can be extremely valuable. Similarly, integration with Network Access Control can move a compromised device onto a quarantine network until it can be investigated and remediated. For network forensics you might integrate with a full packet capture/network forensics platform. In this use case, when a device shows potential compromise, traffic to and from it could be captured for forensic analysis. Such captured network traffic may provide a proverbial smoking gun. This approach could also make you popular

Share:
Read Post

Totally Transparent Research is the embodiment of how we work at Securosis. It’s our core operating philosophy, our research policy, and a specific process. We initially developed it to help maintain objectivity while producing licensed research, but its benefits extend to all aspects of our business.

Going beyond Open Source Research, and a far cry from the traditional syndicated research model, we think it’s the best way to produce independent, objective, quality research.

Here’s how it works:

  • Content is developed ‘live’ on the blog. Primary research is generally released in pieces, as a series of posts, so we can digest and integrate feedback, making the end results much stronger than traditional “ivory tower” research.
  • Comments are enabled for posts. All comments are kept except for spam, personal insults of a clearly inflammatory nature, and completely off-topic content that distracts from the discussion. We welcome comments critical of the work, even if somewhat insulting to the authors. Really.
  • Anyone can comment, and no registration is required. Vendors or consultants with a relevant product or offering must properly identify themselves. While their comments won’t be deleted, the writer/moderator will “call out”, identify, and possibly ridicule vendors who fail to do so.
  • Vendors considering licensing the content are welcome to provide feedback, but it must be posted in the comments - just like everyone else. There is no back channel influence on the research findings or posts.
    Analysts must reply to comments and defend the research position, or agree to modify the content.
  • At the end of the post series, the analyst compiles the posts into a paper, presentation, or other delivery vehicle. Public comments/input factors into the research, where appropriate.
  • If the research is distributed as a paper, significant commenters/contributors are acknowledged in the opening of the report. If they did not post their real names, handles used for comments are listed. Commenters do not retain any rights to the report, but their contributions will be recognized.
  • All primary research will be released under a Creative Commons license. The current license is Non-Commercial, Attribution. The analyst, at their discretion, may add a Derivative Works or Share Alike condition.
  • Securosis primary research does not discuss specific vendors or specific products/offerings, unless used to provide context, contrast or to make a point (which is very very rare).
    Although quotes from published primary research (and published primary research only) may be used in press releases, said quotes may never mention a specific vendor, even if the vendor is mentioned in the source report. Securosis must approve any quote to appear in any vendor marketing collateral.
  • Final primary research will be posted on the blog with open comments.
  • Research will be updated periodically to reflect market realities, based on the discretion of the primary analyst. Updated research will be dated and given a version number.
    For research that cannot be developed using this model, such as complex principles or models that are unsuited for a series of blog posts, the content will be chunked up and posted at or before release of the paper to solicit public feedback, and provide an open venue for comments and criticisms.
  • In rare cases Securosis may write papers outside of the primary research agenda, but only if the end result can be non-biased and valuable to the user community to supplement industry-wide efforts or advances. A “Radically Transparent Research” process will be followed in developing these papers, where absolutely all materials are public at all stages of development, including communications (email, call notes).
    Only the free primary research released on our site can be licensed. We will not accept licensing fees on research we charge users to access.
  • All licensed research will be clearly labeled with the licensees. No licensed research will be released without indicating the sources of licensing fees. Again, there will be no back channel influence. We’re open and transparent about our revenue sources.

In essence, we develop all of our research out in the open, and not only seek public comments, but keep those comments indefinitely as a record of the research creation process. If you believe we are biased or not doing our homework, you can call us out on it and it will be there in the record. Our philosophy involves cracking open the research process, and using our readers to eliminate bias and enhance the quality of the work.

On the back end, here’s how we handle this approach with licensees:

  • Licensees may propose paper topics. The topic may be accepted if it is consistent with the Securosis research agenda and goals, but only if it can be covered without bias and will be valuable to the end user community.
  • Analysts produce research according to their own research agendas, and may offer licensing under the same objectivity requirements.
  • The potential licensee will be provided an outline of our research positions and the potential research product so they can determine if it is likely to meet their objectives.
  • Once the licensee agrees, development of the primary research content begins, following the Totally Transparent Research process as outlined above. At this point, there is no money exchanged.
  • Upon completion of the paper, the licensee will receive a release candidate to determine whether the final result still meets their needs.
  • If the content does not meet their needs, the licensee is not required to pay, and the research will be released without licensing or with alternate licensees.
  • Licensees may host and reuse the content for the length of the license (typically one year). This includes placing the content behind a registration process, posting on white paper networks, or translation into other languages. The research will always be hosted at Securosis for free without registration.

Here is the language we currently place in our research project agreements:

Content will be created independently of LICENSEE with no obligations for payment. Once content is complete, LICENSEE will have a 3 day review period to determine if the content meets corporate objectives. If the content is unsuitable, LICENSEE will not be obligated for any payment and Securosis is free to distribute the whitepaper without branding or with alternate licensees, and will not complete any associated webcasts for the declining LICENSEE. Content licensing, webcasts and payment are contingent on the content being acceptable to LICENSEE. This maintains objectivity while limiting the risk to LICENSEE. Securosis maintains all rights to the content and to include Securosis branding in addition to any licensee branding.

Even this process itself is open to criticism. If you have questions or comments, you can email us or comment on the blog.