Securosis

Research

Securing Hadoop: Architecture and Composition

Our goal for this post is to succinctly outline what Hadoop (and most NoSQL) clusters look like, how they are assembled, and how they are used. This provides better understanding of the security challenges, and what sort of protections need to be leveraged to secure them. Developers and data scientists continue to stretch system performance and scalability, using customized combinations of open source and commercial products, so there is really no such thing as a ‘standard’ Hadoop deployment. With these considerations in mind, it is time to map out threats to the cluster. NoSQL databases enable companies to collect, manage, and analyze incredibly large data sets. Thousands of firms are working on big data projects, from small startups to large enterprises. Since our original paper in 2012 the rate of adoption has only increased; platforms such as Hadoop, Cassandra, Mongo, and RIAK are now commonplace, with some firms supporting multiple installations. In just a couple years they went from “rogue IT” to “core systems”. Most firms recognized the value of “big data”, acknowledged these platforms are essential, and tasked IT teams with bringing them “under IT governance”. Most firms today are taking their first steps to retrofit security and governance controls onto Hadoop. Let’s dig into how all the pieces fit together: Architecture and Data Flow Hadoop has been wildly successful because it scales well, can be configured to handle a wide variety of use cases, and is very inexpensive compared to relational and data warehouse alternatives. Which is all another way of saying it’s cheap, fast, and flexible. To show why and how it scales, let’s take a look at a Hadoop cluster architecture: There are several things to note here. The architecture promotes scaling and performance. It provides parallel processing, and additional nodes provide ‘horizontal’ scalability. This architecture is also inherently multi-tenant, supporting multiple applications across one or more file groups. But there are a lot of moving parts; each node communicates with its peers to ensure that data is properly replicated, nodes are on-line and functional, storage is optimized, and application requests are being processed. We’ll dig into specific threats to Hadoop clusters later in this series. Hadoop Stack To appreciate Hadoop’s flexibility, you need to understand that a cluster can be fully customized. It is useful to think about the Hadoop framework as a ‘stack’, much like a LAMP stack, but much less standardized. While Pig and Hive are commonly used, the ability to mix and match components makes deployments much more diverse. For example, Sqoop and Yarn are alternative data access services. You can select different big data environments to support columnar, graph, document, XML, or multidimensional data. And over the last couple years MapReduce has largely given way to SQL query engines – with Spark, Drill, Impala, and Hive all accommodating increasing use of SQL-style queries. This modularity offers great flexibility to assemble and tailor clusters to behave and perform exactly as desired. But it also makes security more difficult – each option brings its own security options and issues. The beauty part is that you can set up a cluster to satisfy your usability, scalability, and performance goals. You can tailor it to specific types of data, or add modules to facilitate analysis of certain data sets. But that flexibility brings complexity. Each module runs a specific version of code, has its own configuration, and may require independent authentication to work in the cluster. Many pieces must work in tandem here to process data, so each requires its own security review. Some of you reading this are already familiar with the architecture and component stack of a Hadoop cluster. You may be asking, “Why we are we going through these basics?”. To understand threats and appropriate responses, you need to first understand how all the pieces of the cluster work together. Each component interface is a trust relationship, and each relationships is a target. Each component offers attacker a specific set of potential exploits, and defenders have a corresponding set of options for attack detection and prevention. Understanding architecture and cluster composition is the first step to putting together your security strategy. Our next post will present several strategies used to secure big data. Each model includes basic benefits and requires supplementary security tools. After selecting a strategy, you can put together a collection of security controls to meet your objectives. Share:

Share:
Read Post

Totally Transparent Research is the embodiment of how we work at Securosis. It’s our core operating philosophy, our research policy, and a specific process. We initially developed it to help maintain objectivity while producing licensed research, but its benefits extend to all aspects of our business.

Going beyond Open Source Research, and a far cry from the traditional syndicated research model, we think it’s the best way to produce independent, objective, quality research.

Here’s how it works:

  • Content is developed ‘live’ on the blog. Primary research is generally released in pieces, as a series of posts, so we can digest and integrate feedback, making the end results much stronger than traditional “ivory tower” research.
  • Comments are enabled for posts. All comments are kept except for spam, personal insults of a clearly inflammatory nature, and completely off-topic content that distracts from the discussion. We welcome comments critical of the work, even if somewhat insulting to the authors. Really.
  • Anyone can comment, and no registration is required. Vendors or consultants with a relevant product or offering must properly identify themselves. While their comments won’t be deleted, the writer/moderator will “call out”, identify, and possibly ridicule vendors who fail to do so.
  • Vendors considering licensing the content are welcome to provide feedback, but it must be posted in the comments - just like everyone else. There is no back channel influence on the research findings or posts.
    Analysts must reply to comments and defend the research position, or agree to modify the content.
  • At the end of the post series, the analyst compiles the posts into a paper, presentation, or other delivery vehicle. Public comments/input factors into the research, where appropriate.
  • If the research is distributed as a paper, significant commenters/contributors are acknowledged in the opening of the report. If they did not post their real names, handles used for comments are listed. Commenters do not retain any rights to the report, but their contributions will be recognized.
  • All primary research will be released under a Creative Commons license. The current license is Non-Commercial, Attribution. The analyst, at their discretion, may add a Derivative Works or Share Alike condition.
  • Securosis primary research does not discuss specific vendors or specific products/offerings, unless used to provide context, contrast or to make a point (which is very very rare).
    Although quotes from published primary research (and published primary research only) may be used in press releases, said quotes may never mention a specific vendor, even if the vendor is mentioned in the source report. Securosis must approve any quote to appear in any vendor marketing collateral.
  • Final primary research will be posted on the blog with open comments.
  • Research will be updated periodically to reflect market realities, based on the discretion of the primary analyst. Updated research will be dated and given a version number.
    For research that cannot be developed using this model, such as complex principles or models that are unsuited for a series of blog posts, the content will be chunked up and posted at or before release of the paper to solicit public feedback, and provide an open venue for comments and criticisms.
  • In rare cases Securosis may write papers outside of the primary research agenda, but only if the end result can be non-biased and valuable to the user community to supplement industry-wide efforts or advances. A “Radically Transparent Research” process will be followed in developing these papers, where absolutely all materials are public at all stages of development, including communications (email, call notes).
    Only the free primary research released on our site can be licensed. We will not accept licensing fees on research we charge users to access.
  • All licensed research will be clearly labeled with the licensees. No licensed research will be released without indicating the sources of licensing fees. Again, there will be no back channel influence. We’re open and transparent about our revenue sources.

In essence, we develop all of our research out in the open, and not only seek public comments, but keep those comments indefinitely as a record of the research creation process. If you believe we are biased or not doing our homework, you can call us out on it and it will be there in the record. Our philosophy involves cracking open the research process, and using our readers to eliminate bias and enhance the quality of the work.

On the back end, here’s how we handle this approach with licensees:

  • Licensees may propose paper topics. The topic may be accepted if it is consistent with the Securosis research agenda and goals, but only if it can be covered without bias and will be valuable to the end user community.
  • Analysts produce research according to their own research agendas, and may offer licensing under the same objectivity requirements.
  • The potential licensee will be provided an outline of our research positions and the potential research product so they can determine if it is likely to meet their objectives.
  • Once the licensee agrees, development of the primary research content begins, following the Totally Transparent Research process as outlined above. At this point, there is no money exchanged.
  • Upon completion of the paper, the licensee will receive a release candidate to determine whether the final result still meets their needs.
  • If the content does not meet their needs, the licensee is not required to pay, and the research will be released without licensing or with alternate licensees.
  • Licensees may host and reuse the content for the length of the license (typically one year). This includes placing the content behind a registration process, posting on white paper networks, or translation into other languages. The research will always be hosted at Securosis for free without registration.

Here is the language we currently place in our research project agreements:

Content will be created independently of LICENSEE with no obligations for payment. Once content is complete, LICENSEE will have a 3 day review period to determine if the content meets corporate objectives. If the content is unsuitable, LICENSEE will not be obligated for any payment and Securosis is free to distribute the whitepaper without branding or with alternate licensees, and will not complete any associated webcasts for the declining LICENSEE. Content licensing, webcasts and payment are contingent on the content being acceptable to LICENSEE. This maintains objectivity while limiting the risk to LICENSEE. Securosis maintains all rights to the content and to include Securosis branding in addition to any licensee branding.

Even this process itself is open to criticism. If you have questions or comments, you can email us or comment on the blog.