Securosis

Research

Resilient Cloud Network Architectures: Design Patterns

We introduced resilient cloud networks in this series’ first post. We define them as networks using cloud-specific features to provide both stronger security and higher availability for your applications. This post will dig into two different design patterns, and show how cloud networking enables higher resilience. Network Segregation by Default Before we dive into design patterns let’s make sure we are all clear on using network segmentation to improve your security posture, as discussed in our first post. We know segmentation isn’t novel, but it is still difficult in a traditional data center. Infrastructure running different applications gets intermingled, just to efficiently use existing hardware. Even in a totally virtualized data center, segmentation requires significant overhead and management to keep all applications logically isolated – which makes it rare. What is the downside of not segmenting properly? It offers adversaries a clear path to your most important stuff. They can compromise one application and then move deeper into your environment, accessing resources not associated with the application stack they first compromised. So if they bust one application, there is a high likelihood they’ll end up with free rein over everything in the data center. The cloud is different. Each server in a cloud environment is associated with a security group, which defines with very fine granularity which other devices it can communicate with, and over what protocols. This effectively enables you to contain an adversary’s ability to move within your environment, even after compromising a server or application. This concept is often called limiting blast radius. So if one part of your cloud environment goes boom, the rest of your infrastructure is unaffected. This is a key concept in cloud network architecture, highlighted in the design patterns below. PaaS Air Gap To demonstrate a more secure cloud network architecture, consider an Internet-facing application with both web server and application server tiers. Due to the nature of the application, communications between the two layers are through message queues and notifications, so the web servers don’t need to communicate directly with each other. The application server tier connects to the database (a Platform as a Service offering from the cloud provider). The application server tier also communicates with a traditional data center to access other internal corporate data outside the cloud environment. An application must be architected for the get-go to support this design. You aren’t going to redeploy your 20-year-old legacy general ledger application to this design. But if you are architecting a new application, or can rearchitect existing applications, and want total isolation between environments, this is one way to do it. Let’s describe the design. Network Security Groups The key security control typically used in this architecture is a Network Security Group, allowing access to the app servers only from the web servers, and only to the specific port and protocol required. This isolation limits blast radius. To be clear, the NSG is applied individually to each instance – not to subnets. This avoids a flat network, where all instances within a subnet have unrestricted access to all subnet peers. PaaS Services In this application you wouldn’t open access from the web server NSG to the app server NSG, because the architecture doesn’t require direct communication between web servers and app servers. Instead the cloud provider offers a message queue platform and notification service which provide asynchronous communication between the web and application tiers. So even if the web servers are compromised, the app servers are not accessible. Further isolation is offered by a PaaS database, also offered by the cloud service provider. You can restrict requests to the PaaS DB to specific Network Security Groups. This ensures only the right instances can request information from the database service, and all requests are authorized. Connection to the Data Center The application may require data from the data center, so the app servers have access to the needed data through a VPN. You route all traffic to the data center through this inspection and control point. Typically it’s better not to route cloud traffic through inspection bottlenecks, but in this design pattern it’s not a big deal, because the traffic needs to pass over a specific egress connection to the data center, so you might as well inspect there as well. You ensure ingress traffic over that connection can only go to the app server security group. This ensures that an adversary who compromises your network cannot access your whole cloud network by bouncing through your data center. Advantages of This Design Isolation between Web and App Servers: By putting the auto-scaling groups in a Network Security Groups, you restrict their access to everything. No Direct Connection: In this design pattern you can block direct traffic to the application servers from anywhere but the VPN. Intra-application traffic is asynchronous via the message queue and notification service, so isolation is complete. PaaS Service: This architecture uses cloud provider services, with strong built-in security and resilience. Cloud providers understand that security and availability are core to their business. What’s next for this kind of architecture? To advance this architecture you could deploy mirrors of the application in different zones within a region to limit the blast radius in case one device is compromised, and to provide additional resiliency in case of a zone failure. Additionally, if you use immutable servers within each auto-scale group, you can update/patch/reconfigure instances automatically by changing the master image and having auto-scaling replace the old instances with new ones. This limits configuration drift and adversary persistence. Multi-Region Web Site This architecture was designed to deploy a website in multiple regions, with availability as close to 100% as possible. This design is far more expensive than even running in multiple zones within a single region, because you need to pay for network traffic between regions (compared to free intra-region traffic); but if uptime is essential to your business, this architecture improves resiliency. This is an externally facing application so you run traffic through a cloud WAF to get rid of obvious attack traffic. Inbound sessions can

Share:
Read Post

Securing Hadoop: Security Recommendations for Hadoop [New Paper]

We are pleased to release our updated white paper on big data security: Securing Hadoop: Security Recommendations for Hadoop Environments. Just about everything has changed in the four years since we published the original. Hadoop has solidified its position as the dominant big data platform, by constantly advancing in function and scale. While the ability to customize a Hadoop cluster to suit diverse needs has been its main driver, the security advances make Hadoop viable for enterprises. Whether embedded directly into Hadoop or deployed as add-on modules, services like identity, encryption, log analysis, key management, cluster validation, and fine-grained authorization are all available. Our goal for this research paper is first to introduce these technologies to IT and security teams, and also to help them assemble these technologies into an coherent security strategy. This research project provides a high-level overview of security challenges for big data environments. From there we discuss security technologies available for the Hadoop ecosystem, and then sketch out a set of recommendations to secure big data clusters. Our recommendations map threats and compliance requirements directly to supporting technologies to facilitate your selection process. We outline how these tactical responses work within the security architectures which firms employ, tailoring their approaches to the tools and technical talent on hand. Finally, we would like to thank Hortonworks and Vormetric for licensing this research. Without firms who appreciate our work enough to license our content, we could not bring you quality research free! We hope you find this research helpful in understanding big data and its associated security challenges. You can download a free copy of the white paper from our research library, or grab a copy directly: Securing Hadoop: Security Recommendations for Hadoop Environments (PDF). Share:

Share:
Read Post
dinosaur-sidebar

Totally Transparent Research is the embodiment of how we work at Securosis. It’s our core operating philosophy, our research policy, and a specific process. We initially developed it to help maintain objectivity while producing licensed research, but its benefits extend to all aspects of our business.

Going beyond Open Source Research, and a far cry from the traditional syndicated research model, we think it’s the best way to produce independent, objective, quality research.

Here’s how it works:

  • Content is developed ‘live’ on the blog. Primary research is generally released in pieces, as a series of posts, so we can digest and integrate feedback, making the end results much stronger than traditional “ivory tower” research.
  • Comments are enabled for posts. All comments are kept except for spam, personal insults of a clearly inflammatory nature, and completely off-topic content that distracts from the discussion. We welcome comments critical of the work, even if somewhat insulting to the authors. Really.
  • Anyone can comment, and no registration is required. Vendors or consultants with a relevant product or offering must properly identify themselves. While their comments won’t be deleted, the writer/moderator will “call out”, identify, and possibly ridicule vendors who fail to do so.
  • Vendors considering licensing the content are welcome to provide feedback, but it must be posted in the comments - just like everyone else. There is no back channel influence on the research findings or posts.
    Analysts must reply to comments and defend the research position, or agree to modify the content.
  • At the end of the post series, the analyst compiles the posts into a paper, presentation, or other delivery vehicle. Public comments/input factors into the research, where appropriate.
  • If the research is distributed as a paper, significant commenters/contributors are acknowledged in the opening of the report. If they did not post their real names, handles used for comments are listed. Commenters do not retain any rights to the report, but their contributions will be recognized.
  • All primary research will be released under a Creative Commons license. The current license is Non-Commercial, Attribution. The analyst, at their discretion, may add a Derivative Works or Share Alike condition.
  • Securosis primary research does not discuss specific vendors or specific products/offerings, unless used to provide context, contrast or to make a point (which is very very rare).
    Although quotes from published primary research (and published primary research only) may be used in press releases, said quotes may never mention a specific vendor, even if the vendor is mentioned in the source report. Securosis must approve any quote to appear in any vendor marketing collateral.
  • Final primary research will be posted on the blog with open comments.
  • Research will be updated periodically to reflect market realities, based on the discretion of the primary analyst. Updated research will be dated and given a version number.
    For research that cannot be developed using this model, such as complex principles or models that are unsuited for a series of blog posts, the content will be chunked up and posted at or before release of the paper to solicit public feedback, and provide an open venue for comments and criticisms.
  • In rare cases Securosis may write papers outside of the primary research agenda, but only if the end result can be non-biased and valuable to the user community to supplement industry-wide efforts or advances. A “Radically Transparent Research” process will be followed in developing these papers, where absolutely all materials are public at all stages of development, including communications (email, call notes).
    Only the free primary research released on our site can be licensed. We will not accept licensing fees on research we charge users to access.
  • All licensed research will be clearly labeled with the licensees. No licensed research will be released without indicating the sources of licensing fees. Again, there will be no back channel influence. We’re open and transparent about our revenue sources.

In essence, we develop all of our research out in the open, and not only seek public comments, but keep those comments indefinitely as a record of the research creation process. If you believe we are biased or not doing our homework, you can call us out on it and it will be there in the record. Our philosophy involves cracking open the research process, and using our readers to eliminate bias and enhance the quality of the work.

On the back end, here’s how we handle this approach with licensees:

  • Licensees may propose paper topics. The topic may be accepted if it is consistent with the Securosis research agenda and goals, but only if it can be covered without bias and will be valuable to the end user community.
  • Analysts produce research according to their own research agendas, and may offer licensing under the same objectivity requirements.
  • The potential licensee will be provided an outline of our research positions and the potential research product so they can determine if it is likely to meet their objectives.
  • Once the licensee agrees, development of the primary research content begins, following the Totally Transparent Research process as outlined above. At this point, there is no money exchanged.
  • Upon completion of the paper, the licensee will receive a release candidate to determine whether the final result still meets their needs.
  • If the content does not meet their needs, the licensee is not required to pay, and the research will be released without licensing or with alternate licensees.
  • Licensees may host and reuse the content for the length of the license (typically one year). This includes placing the content behind a registration process, posting on white paper networks, or translation into other languages. The research will always be hosted at Securosis for free without registration.

Here is the language we currently place in our research project agreements:

Content will be created independently of LICENSEE with no obligations for payment. Once content is complete, LICENSEE will have a 3 day review period to determine if the content meets corporate objectives. If the content is unsuitable, LICENSEE will not be obligated for any payment and Securosis is free to distribute the whitepaper without branding or with alternate licensees, and will not complete any associated webcasts for the declining LICENSEE. Content licensing, webcasts and payment are contingent on the content being acceptable to LICENSEE. This maintains objectivity while limiting the risk to LICENSEE. Securosis maintains all rights to the content and to include Securosis branding in addition to any licensee branding.

Even this process itself is open to criticism. If you have questions or comments, you can email us or comment on the blog.