Securosis

Research

Incident Response in the Cloud Age: More Data, No Data, or Both?

As we discussed in the first post of this series, incident response needs to change, given disruptions such as cloud computing and the availability of new data sources, including external threat intelligence. We wrote a paper called Leveraging Threat Intelligence in Incident Response (TI+IR) back in 2014 to update our existing I/R process map. Here is what we came up with: So what has changed in the two years since we published that paper? Back then the cloud was nascent and we didn’t know if DevOps was going to work. Today both the cloud and DevOps are widely acknowledged as the future of computing and how applications will be developed and deployed. Of course we will take a while to get there, but they are clearly real already, and upending pretty much all the existing ways security currently works, including incident response. The good news is that our process map still shows how I/R can leverage additional data sources and the other functions involved in performing a complete and thorough investigation. Although it is hard to get sufficient staff to fill out all the functions described on the map. But we’ll deal with that in our next post. For now let’s focus on integrating additional data sources including external threat intelligence, and handling emerging cloud architectures. More Data (Threat Intel) We explained why threat intelligence matters to incident response in our TI+IR paper: To really respond faster you need to streamline investigations and make the most of your resources, a message we’ve been delivering for years. This starts with an understanding of what information would interest attackers. From there you can identify potential adversaries and gather threat intelligence to anticipate their targets and tactics. With that information you can protect yourself, monitor for indicators of compromise, and streamline your response when an attack is (inevitably) successful. You need to figure out the right threat intelligence sources, and how to aggregate the data and run the analytics. We don’t want to rehash a lot of what’s in the TI+IR paper, but the most useful information sources include: Compromised Devices: This data source provides external notification that a device is acting suspiciously by communicating with known bad sites or participating in botnet-like activities. Services are emerging to mine large volumes of Internet traffic to identify such devices. Malware Indicators: Malware analysis continues to mature rapidly, getting better and better at understanding exactly what malicious code does to devices. This enables you to define both technical and behavioral indicators, across all platforms and devices to search for within your environment, as described in gory detail in Malware Analysis Quant. IP Reputation: The most common reputation data is based on IP addresses and provides a dynamic list of known bad and/or suspicious addresses based data such as spam sources, torrent usage, DDoS traffic indicators, and web attack origins. IP reputation has evolved since its introduction, and now features scores comparing the relative maliciousness of different addresses, factoring in additional context such as Tor nodes/anonymous proxies, geolocation, and device ID to further refine reputation. Malicious Infrastructure: One specialized type of reputation often packaged as a separate feed is intelligence on Command and Control (C&C) networks and other servers/sources of malicious activity. These feeds track global C&C traffic and pinpoint malware originators, botnet controllers, compromised proxies, and other IP addresses and sites to watch for as you monitor your environment. Phishing Messages: Most advanced attacks seem to start with a simple email. Given the ubiquity of email and the ease of adding links to messages, attackers typically find email the path of least resistance to a foothold in your environment. Isolating and analyzing phishing email can yield valuable information about attackers and tactics. As depicted in the process map above, you integrate both external and internal security data sources, then perform analytics to isolate the root cause of the attacks and figure out the damage and extent of the compromise. Critical success factors in dealing with all this data are the ability to aggregate it somewhere, and then to perform the necessary analysis. This aggregation happens at multiple layers of the I/R process, so you’ll need to store and integrate all the I/R-relevant data. Physical integration is putting all your data into a single store, and then using it as a central repository for response. Logical integration uses valuable pieces of threat intelligence to search for issues within your environment, using separate systems for internal and external data. We are not religious about how you handle it, but there are advantages to centralizing all data in one place. So as long as you can do your job, though – collecting TI and using it to focus investigation – either way works. Vendors providing big data security all want to be your physical aggregation point, but results are what matters, not where you store data. Of course we are talking about a huge amount of data, so your choices for both data sources and I/R aggregation platform are critical parts of building an effective response process. No Data (Cloud) So what happens to response now that you don’t control a lot of the data used by your corporate systems? The data may reside with a Software as a Service (SaaS) provider, or your application may be deployed in a cloud computing service. In data centers with traditional networks it’s pretty straightforward to run traffic through inspection points, capture data as needed, and then perform forensic investigation. In the cloud, not so much. To be clear, moving your computing to the cloud doesn’t totally eliminate your ability to monitor and investigate your systems, but your visibility into what’s happening on those systems using traditional technologies is dramatically limited. So the first step for I/R in the cloud has nothing to do with technology. It’s all about governance. Ugh. I know most security professionals just felt a wave of nausea hit. The G word is not what anyone wants to hear. But it’s pretty much the only way to establish the rules of engagement with cloud service providers. What kinds of things need to be defined? SLAs: One

Share:
Read Post

Understanding and Selecting RASP: Use Cases

As you might expect, the primary function of RASP is to protect web applications against known and emerging threats; it is typically deployed to block attacks at the application layer, before vulnerabilities can be exploited. There is no question that the industry needs application security platforms – major new vulnerabilities are disclosed just about every week. And there are good reasons companies look to outside security vendors to help protect their applications. Most often we hear that firms simply have too many critical vulnerabilities to fix in a timely manner, with many reporting their backlog would take years to fix. In many cases the issue is legacy applications – ones which probably should never have been put on the Internet. These applications are often unsupported, with the engineers who developed them no longer available, or the platforms so fragile that they become unstable if security fixes are applied. And in many cases it is simply economics: the cost of securing the application itself is financially unfeasible, so companies are willing to accept the risk, instead choosing to address threats externally as best they can. But if these were the only reasons, organizations could simply use one of the many older technologies to application security, rather than needing RASP. Astute readers will notice that these are, by and large, the classic use cases for Intrusion Detection Systems (IDS) and Web Application Firewalls (WAFs). So why do people select RASP in lieu of more mature – and in many cases already purchased and deployed – technologies like IDS or WAF? The simple answer is that the use cases are different enough to justify a different solution. RASP integrates security one large step from “security bolted on” toward “security from within”. But to understand the differences between use cases, you first need to understand how user requirements differ, and where they are not adequately addressed by those older technologies. The core requirements above are givens, but the differences in how RASP is employed are best illustrated by a handful of use cases. Use Cases APIs & Automation: Most of our readers know what Application Programming Interfaces (APIs) are, and how they are used. Less clear is the greatly expanding need for programatic interfaces in security products, thanks to application delivery disruptions caused by cloud computing. Cloud service models – whether deployment is private, public, or hybrid – enable much greater efficiencies as networks, servers, and applications can all be constructed and tested as software. APIs are how we orchestrate building, testing, and deployment of applications. Security products like RASP – unlike IDS and most WAFs – offer their full platform functionality via APIs, enabling software engineers to work with RASP in the manner their native metaphor. Development Processes: As more application development teams tackle application vulnerabilities within the development cycle, they bring different product requirements than IT or security teams applying security controls post-deployment. It’s not enough for security products to identify and address vulnerabilities – they need to fit the development model. Software development processes are evolving (notably via continuous integration, continuous deployment, and DevOps) to leverage advantages of virtualization and cloud services. Speed is imperative, so RASP embedded within the application stack, providing real-time monitoring and blocking, supports more agile approaches. Application Awareness: As attackers continue to move up the stack, from networks to servers and then to applications, it is becoming more distinguish attacks from normal usage. RASP is differentiated by its ability to include application context in security policies. Many WAFs offer ‘positive’ security capabilities (particularly whitelisting valid application requests), but being embedded within applications provides additional application knowledge and instrumentation capabilities to RASP deployments. Further, some RASP platforms help developers by specifically reference modules or lines of suspect code. For many development teams, potentially better detection capabilities are less valuable than having RASP pinpoint vulnerable code. Pre-Deployment Validation: For cars, pacemakers, and software, it has been proven over decades that the earlier in the production cycle errors are discovered, the easier – and cheaper – they are to fix. This means testing in general, and security testing specifically, works better earlier into the development process. Rather than relying on vulnerability scanners and penetration testers after an application has been launched, we see more and more application security testing performed prior to deployment. Again, this is not impossible with other application-centric tools, but RASP is easier to build into automated testing. Our next post will talk about deployment, and working RASP into development pipelines. Share:

Share:
Read Post

Totally Transparent Research is the embodiment of how we work at Securosis. It’s our core operating philosophy, our research policy, and a specific process. We initially developed it to help maintain objectivity while producing licensed research, but its benefits extend to all aspects of our business.

Going beyond Open Source Research, and a far cry from the traditional syndicated research model, we think it’s the best way to produce independent, objective, quality research.

Here’s how it works:

  • Content is developed ‘live’ on the blog. Primary research is generally released in pieces, as a series of posts, so we can digest and integrate feedback, making the end results much stronger than traditional “ivory tower” research.
  • Comments are enabled for posts. All comments are kept except for spam, personal insults of a clearly inflammatory nature, and completely off-topic content that distracts from the discussion. We welcome comments critical of the work, even if somewhat insulting to the authors. Really.
  • Anyone can comment, and no registration is required. Vendors or consultants with a relevant product or offering must properly identify themselves. While their comments won’t be deleted, the writer/moderator will “call out”, identify, and possibly ridicule vendors who fail to do so.
  • Vendors considering licensing the content are welcome to provide feedback, but it must be posted in the comments - just like everyone else. There is no back channel influence on the research findings or posts.
    Analysts must reply to comments and defend the research position, or agree to modify the content.
  • At the end of the post series, the analyst compiles the posts into a paper, presentation, or other delivery vehicle. Public comments/input factors into the research, where appropriate.
  • If the research is distributed as a paper, significant commenters/contributors are acknowledged in the opening of the report. If they did not post their real names, handles used for comments are listed. Commenters do not retain any rights to the report, but their contributions will be recognized.
  • All primary research will be released under a Creative Commons license. The current license is Non-Commercial, Attribution. The analyst, at their discretion, may add a Derivative Works or Share Alike condition.
  • Securosis primary research does not discuss specific vendors or specific products/offerings, unless used to provide context, contrast or to make a point (which is very very rare).
    Although quotes from published primary research (and published primary research only) may be used in press releases, said quotes may never mention a specific vendor, even if the vendor is mentioned in the source report. Securosis must approve any quote to appear in any vendor marketing collateral.
  • Final primary research will be posted on the blog with open comments.
  • Research will be updated periodically to reflect market realities, based on the discretion of the primary analyst. Updated research will be dated and given a version number.
    For research that cannot be developed using this model, such as complex principles or models that are unsuited for a series of blog posts, the content will be chunked up and posted at or before release of the paper to solicit public feedback, and provide an open venue for comments and criticisms.
  • In rare cases Securosis may write papers outside of the primary research agenda, but only if the end result can be non-biased and valuable to the user community to supplement industry-wide efforts or advances. A “Radically Transparent Research” process will be followed in developing these papers, where absolutely all materials are public at all stages of development, including communications (email, call notes).
    Only the free primary research released on our site can be licensed. We will not accept licensing fees on research we charge users to access.
  • All licensed research will be clearly labeled with the licensees. No licensed research will be released without indicating the sources of licensing fees. Again, there will be no back channel influence. We’re open and transparent about our revenue sources.

In essence, we develop all of our research out in the open, and not only seek public comments, but keep those comments indefinitely as a record of the research creation process. If you believe we are biased or not doing our homework, you can call us out on it and it will be there in the record. Our philosophy involves cracking open the research process, and using our readers to eliminate bias and enhance the quality of the work.

On the back end, here’s how we handle this approach with licensees:

  • Licensees may propose paper topics. The topic may be accepted if it is consistent with the Securosis research agenda and goals, but only if it can be covered without bias and will be valuable to the end user community.
  • Analysts produce research according to their own research agendas, and may offer licensing under the same objectivity requirements.
  • The potential licensee will be provided an outline of our research positions and the potential research product so they can determine if it is likely to meet their objectives.
  • Once the licensee agrees, development of the primary research content begins, following the Totally Transparent Research process as outlined above. At this point, there is no money exchanged.
  • Upon completion of the paper, the licensee will receive a release candidate to determine whether the final result still meets their needs.
  • If the content does not meet their needs, the licensee is not required to pay, and the research will be released without licensing or with alternate licensees.
  • Licensees may host and reuse the content for the length of the license (typically one year). This includes placing the content behind a registration process, posting on white paper networks, or translation into other languages. The research will always be hosted at Securosis for free without registration.

Here is the language we currently place in our research project agreements:

Content will be created independently of LICENSEE with no obligations for payment. Once content is complete, LICENSEE will have a 3 day review period to determine if the content meets corporate objectives. If the content is unsuitable, LICENSEE will not be obligated for any payment and Securosis is free to distribute the whitepaper without branding or with alternate licensees, and will not complete any associated webcasts for the declining LICENSEE. Content licensing, webcasts and payment are contingent on the content being acceptable to LICENSEE. This maintains objectivity while limiting the risk to LICENSEE. Securosis maintains all rights to the content and to include Securosis branding in addition to any licensee branding.

Even this process itself is open to criticism. If you have questions or comments, you can email us or comment on the blog.