Securosis

Research

Secrets Management: Use Cases

This post will discuss why secrets management is needed at all, along with the diverse use cases which teams need it to address. In every case there is some secret data which needs to be sent – hopefully not in plain text – to an application or service. And in every case we want the ability to provide secrets, both when an operator is present and automatically. The biggest single issue is that security around these secrets today is largely absent, and they are kept in cleartext within documents of various types. Let’s dive in. Use Cases API Gateways and Access Keys: Application Programming Interfaces are how software programs interact with other software and services. These API form the basic interface for joint operation. To use an API you must first authenticate yourself – or your code – to the gateway. This is typically done by providing an access key, token, or response to a cryptographic challenge. For ease of automation many developers hard-code access keys, leaving themselves vulnerable to simple file or code inspection. And all too often, even when kept in a private file on the developer’s desktop, keys are accidentally shared or posted, such as to public code repositories. The goal here is to keep access keys secret while still provisioning to valid applications as needed. Automated Services: Applications are seldom stand-alone entities. They are typically comprised of many different components, databases, and supporting services. And with current application architectures we launch many instances of an application to ensure scalability and resiliency. As we launch applications, whether in containers or as servers, we must provision them with configuration data, identity certificates, and tokens. How does a newly created virtual machine, container, or application discover its identity and access the resources it needs? How can we uniquely identify a container instance among a sea of clones? In the race to fully automate the environment, organizations have automated so fast that they got out over their skis, with little security and a decided imbalance towards build speed. Developers typically place credentials in configuration files which are conveniently available to applications and servers on startup. We find production credentials shared with quality assurance and developer systems, which are commonly far less secure and not always monitored. They are also frequently shared with other applications and services which should not have access. The goal is to segregate credentials without causing breakage or unacceptable barriers. Build Automation: Most build environments are insecure. Developers tend to feel security during development slows them down, so they often bypass security controls in development processes. Build environments are normally under developer control, on development-owned servers, so few outsiders know where they are or how they operate. Nightly build servers has been around for over a decade, with steadily increasing automation to improve agility. As things speed up we remove human oversight. Continuous Integration and Continuous Deployment use automation to speed software delivery. Build servers like Jenkins and Bamboo automatically regenerate application as code, formation templates, and scripts are checked into repositories. When builds are complete we automatically launch new environments to perform functional, regression, and even security tests. When these tests pass, some organizations launch the code in production! Build server security has become an important topic. We no longer have the luxury of leaving passwords, encryption keys, and access tokens sitting in unprotected files or scripts. But just as continuous integration and DevOps improve agility, we need to automate the provisioning of secrets into the process as well, and create an audit trail to prove we are delivering code and services securely. Encrypted Data: Providing encryption keys to unlock encrypted volumes and file stores is a common task, both on-premise and for cloud services. In fact, automated infrastructure makes the problem more difficult as the environment is less static, with thousands of services, containers and applications popping in and out of service. Traditionally we have used key management servers designed to handle secure distribution and management of keys, but a number of commercial key management tools (hardware and software) have not been augmented for Infrastructure and Platform as a Service. Additionally, developers demand better API integration for seamless use with applications. This capability is frequently lacking, so some teams use cloud native key management, while others opt for secrets management as a replacement. Sharing: Collaboration software has helped development, quality assurance, and product mamagement teams cooperate on projects; even though people in these groups are less and less likely to share office space. User are more likely to work from home, at least part time. In some contexts the issue is how to securely share information across a team of remote developers, but that use case overlaps with having IT share secret data across multiple data centers without exposing it in clear text, or exposed in random files. The databases that hold data for chat and collaboration services tend to not be very secure, and texting certificates to a co-worker is a non-starter. The solution is a central, robust repository, where a select group of users can store and retrieve secrets. Of course there are plenty more use cases. In interviews we discuss everything from simple passwords to bitcoin wallets. But for this research we need to focus on the issues developers and IT security folks asked about. Our next post will discuss the core features and functions of a secrets management system, as well as some advanced functions which differentiate commercial options from open source. We want to provide a sense of what is possible, and help guide readers to the subset of functions they need for their use cases. Share:

Share:
Read Post

Totally Transparent Research is the embodiment of how we work at Securosis. It’s our core operating philosophy, our research policy, and a specific process. We initially developed it to help maintain objectivity while producing licensed research, but its benefits extend to all aspects of our business.

Going beyond Open Source Research, and a far cry from the traditional syndicated research model, we think it’s the best way to produce independent, objective, quality research.

Here’s how it works:

  • Content is developed ‘live’ on the blog. Primary research is generally released in pieces, as a series of posts, so we can digest and integrate feedback, making the end results much stronger than traditional “ivory tower” research.
  • Comments are enabled for posts. All comments are kept except for spam, personal insults of a clearly inflammatory nature, and completely off-topic content that distracts from the discussion. We welcome comments critical of the work, even if somewhat insulting to the authors. Really.
  • Anyone can comment, and no registration is required. Vendors or consultants with a relevant product or offering must properly identify themselves. While their comments won’t be deleted, the writer/moderator will “call out”, identify, and possibly ridicule vendors who fail to do so.
  • Vendors considering licensing the content are welcome to provide feedback, but it must be posted in the comments - just like everyone else. There is no back channel influence on the research findings or posts.
    Analysts must reply to comments and defend the research position, or agree to modify the content.
  • At the end of the post series, the analyst compiles the posts into a paper, presentation, or other delivery vehicle. Public comments/input factors into the research, where appropriate.
  • If the research is distributed as a paper, significant commenters/contributors are acknowledged in the opening of the report. If they did not post their real names, handles used for comments are listed. Commenters do not retain any rights to the report, but their contributions will be recognized.
  • All primary research will be released under a Creative Commons license. The current license is Non-Commercial, Attribution. The analyst, at their discretion, may add a Derivative Works or Share Alike condition.
  • Securosis primary research does not discuss specific vendors or specific products/offerings, unless used to provide context, contrast or to make a point (which is very very rare).
    Although quotes from published primary research (and published primary research only) may be used in press releases, said quotes may never mention a specific vendor, even if the vendor is mentioned in the source report. Securosis must approve any quote to appear in any vendor marketing collateral.
  • Final primary research will be posted on the blog with open comments.
  • Research will be updated periodically to reflect market realities, based on the discretion of the primary analyst. Updated research will be dated and given a version number.
    For research that cannot be developed using this model, such as complex principles or models that are unsuited for a series of blog posts, the content will be chunked up and posted at or before release of the paper to solicit public feedback, and provide an open venue for comments and criticisms.
  • In rare cases Securosis may write papers outside of the primary research agenda, but only if the end result can be non-biased and valuable to the user community to supplement industry-wide efforts or advances. A “Radically Transparent Research” process will be followed in developing these papers, where absolutely all materials are public at all stages of development, including communications (email, call notes).
    Only the free primary research released on our site can be licensed. We will not accept licensing fees on research we charge users to access.
  • All licensed research will be clearly labeled with the licensees. No licensed research will be released without indicating the sources of licensing fees. Again, there will be no back channel influence. We’re open and transparent about our revenue sources.

In essence, we develop all of our research out in the open, and not only seek public comments, but keep those comments indefinitely as a record of the research creation process. If you believe we are biased or not doing our homework, you can call us out on it and it will be there in the record. Our philosophy involves cracking open the research process, and using our readers to eliminate bias and enhance the quality of the work.

On the back end, here’s how we handle this approach with licensees:

  • Licensees may propose paper topics. The topic may be accepted if it is consistent with the Securosis research agenda and goals, but only if it can be covered without bias and will be valuable to the end user community.
  • Analysts produce research according to their own research agendas, and may offer licensing under the same objectivity requirements.
  • The potential licensee will be provided an outline of our research positions and the potential research product so they can determine if it is likely to meet their objectives.
  • Once the licensee agrees, development of the primary research content begins, following the Totally Transparent Research process as outlined above. At this point, there is no money exchanged.
  • Upon completion of the paper, the licensee will receive a release candidate to determine whether the final result still meets their needs.
  • If the content does not meet their needs, the licensee is not required to pay, and the research will be released without licensing or with alternate licensees.
  • Licensees may host and reuse the content for the length of the license (typically one year). This includes placing the content behind a registration process, posting on white paper networks, or translation into other languages. The research will always be hosted at Securosis for free without registration.

Here is the language we currently place in our research project agreements:

Content will be created independently of LICENSEE with no obligations for payment. Once content is complete, LICENSEE will have a 3 day review period to determine if the content meets corporate objectives. If the content is unsuitable, LICENSEE will not be obligated for any payment and Securosis is free to distribute the whitepaper without branding or with alternate licensees, and will not complete any associated webcasts for the declining LICENSEE. Content licensing, webcasts and payment are contingent on the content being acceptable to LICENSEE. This maintains objectivity while limiting the risk to LICENSEE. Securosis maintains all rights to the content and to include Securosis branding in addition to any licensee branding.

Even this process itself is open to criticism. If you have questions or comments, you can email us or comment on the blog.