Securosis

Research

Secrets Management: Deployment Considerations

We will close out this series with a look at several operational considerations for selecting a secrets management platform. There are quite a few secrets management tools, both commercial and otherwise, on the market, and each does things a bit differently. Rather than a giant survey of every product and how it works, we will focus on the facets of these products which enable them to handle the use cases discussed earlier. Central questions include how these platforms deploy, how they provide scalability and resiliency, and how they integrate with the services they supply secrets to? To better distinguish between products you need to understand why they were created, because core functions and deployment models are heavily influenced by a platform’s intended use. Classes of Products Secrets management platforms fall into two basic categories: general-purpose and single-purpose. General-purpose solutions provide secrets for multiple use cases, with many types of secrets. General-purpose systems can automatically provision secrets to just about any type of application – from sending user name and password to a web page, to issuing API keys, to dynamic cloud workloads. Single-purpose options – commonly called ‘embedded’ because they install into another platform – are typically focused on one use case. For example the embedded solutions focus on provisioning secrets to Docker containers, and nest into your orchestration manager (e.g.: Swarm, Kubernetes, DC/OS). This is a critical distinction, because a product embedded into a container manager may not work for non-container use cases. The good news is that many services are deployed this way so they are still useful in many environments, and because these tools leverage existing infrastructure they often integrate well and scale easily. These platforms typically leverage specific constructs of the orchestration manager or container environment to provide secrets. They also tend to make assumptions about how secrets are to be used; for example they may leverage Kubernetes’ ‘namespace’ to enforce policy or the UNIX ‘namespace’ to distribute secrets. Because containers are ephemeral, ephemeral or ‘dynamic’ secrets are often preferred for those secrets managers. The bad news is that some embedded tools assume your cluster is a secure environment, so they can safely pass and store secrets in clear text. Many embedded tools fully encrypt secrets, but they may not support diverse types of secrets or integrate with non-containerized applications. These specializations are neither good nor bad, depending on what you need for secrets management, but embedded systems may be limited. General-purpose products are typically more flexible and may take more time and to set up, but provide a breadth of functions not generally found in embedded tools. Deployment Models Solitary Servers Common among early tools focused on personal productivity, solitary servers are exactly what the name implies. They typically consist of a central secret storage database and a single server instance that manages it. Basically all functions – including user interfaces, storage management, key management, authentication, and policy management – are handled by a single service. These tools are commonly used via command-line interfaces or API, and work best for a small number of systems. Client-Server Architecture The label for this model varies from vendor to vendor. Primary/Secondary, Manager/Worker, Master/Slave, and Service/Agent are just some of the terms to describe the hierarchical relationship between the principal service which manages the repository of secrets, and the client which works with the calling application. This is by far the most common architecture. There is a repository where encrypted secrets are stored, usually a database which is shared or replicated across one or more manager nodes. And each manager can work with one or more agents to support the needs of their service or application. This architecture helps provide scalability and reliability by spawning new clients and servers as needed. These products often deploy each component as a container, leveraging the same infrastructure as the applications they serve. Many embedded products use this model to scale. Integration We already talked about how secrets are shared between a secrets management tool and a recipient, whether human or machine. And we covered integration with container management and orchestration systems, as many tools were designed to do. It’s time to mention the other common integration points and how each works. Build Servers: Tools like Jenkins and Bamboo are used by software development teams to automate the building and verification of new code. These tools commonly access one or more repositories to get updated code, grab automation scripts and libraries to set up new environments, connect to virtual or cloud services to run tests, and sign code before moving tested code into another repository or container registry. Each action requires specific credentials before it can take place. Secrets management integration is either performed as a plug-in component to the build server or as an external service it communicates with. IT Automation: Automated builds and the power of build managers have vastly improved development productivity, but orchestration tools are what move code at warp speed from developer desktops into production. Chef/Puppet/Ansible are the trio of popular orchestration tools automating IT and development tasks, the backbone of Continuous Integration and Continuous Deployment. Virtually any programable IT operation can be performed with these tools, including most VMware and all cloud services functions offered through API. As with build servers, secrets management typically installs as a component or add-on module of the orchestration tool, or runs as a service. Public Cloud Support: Public cloud is a special case. Conceptually, every use case outlined in this series is applicable to cloud services. And because every service in a public cloud is API enabled, it is the ideal playground for secrets management tools. What’s special about cloud services is how integration is managed; most secrets management tools which support the cloud directly integrate with either cloud native identity systems, cloud-native key management, or both. This offers advantages because secrets can then be provisioned in any region, to any supported service within that region, leveraging existing identities. The cloud service can fully define which user can access which secrets.

Share:
Read Post

Totally Transparent Research is the embodiment of how we work at Securosis. It’s our core operating philosophy, our research policy, and a specific process. We initially developed it to help maintain objectivity while producing licensed research, but its benefits extend to all aspects of our business.

Going beyond Open Source Research, and a far cry from the traditional syndicated research model, we think it’s the best way to produce independent, objective, quality research.

Here’s how it works:

  • Content is developed ‘live’ on the blog. Primary research is generally released in pieces, as a series of posts, so we can digest and integrate feedback, making the end results much stronger than traditional “ivory tower” research.
  • Comments are enabled for posts. All comments are kept except for spam, personal insults of a clearly inflammatory nature, and completely off-topic content that distracts from the discussion. We welcome comments critical of the work, even if somewhat insulting to the authors. Really.
  • Anyone can comment, and no registration is required. Vendors or consultants with a relevant product or offering must properly identify themselves. While their comments won’t be deleted, the writer/moderator will “call out”, identify, and possibly ridicule vendors who fail to do so.
  • Vendors considering licensing the content are welcome to provide feedback, but it must be posted in the comments - just like everyone else. There is no back channel influence on the research findings or posts.
    Analysts must reply to comments and defend the research position, or agree to modify the content.
  • At the end of the post series, the analyst compiles the posts into a paper, presentation, or other delivery vehicle. Public comments/input factors into the research, where appropriate.
  • If the research is distributed as a paper, significant commenters/contributors are acknowledged in the opening of the report. If they did not post their real names, handles used for comments are listed. Commenters do not retain any rights to the report, but their contributions will be recognized.
  • All primary research will be released under a Creative Commons license. The current license is Non-Commercial, Attribution. The analyst, at their discretion, may add a Derivative Works or Share Alike condition.
  • Securosis primary research does not discuss specific vendors or specific products/offerings, unless used to provide context, contrast or to make a point (which is very very rare).
    Although quotes from published primary research (and published primary research only) may be used in press releases, said quotes may never mention a specific vendor, even if the vendor is mentioned in the source report. Securosis must approve any quote to appear in any vendor marketing collateral.
  • Final primary research will be posted on the blog with open comments.
  • Research will be updated periodically to reflect market realities, based on the discretion of the primary analyst. Updated research will be dated and given a version number.
    For research that cannot be developed using this model, such as complex principles or models that are unsuited for a series of blog posts, the content will be chunked up and posted at or before release of the paper to solicit public feedback, and provide an open venue for comments and criticisms.
  • In rare cases Securosis may write papers outside of the primary research agenda, but only if the end result can be non-biased and valuable to the user community to supplement industry-wide efforts or advances. A “Radically Transparent Research” process will be followed in developing these papers, where absolutely all materials are public at all stages of development, including communications (email, call notes).
    Only the free primary research released on our site can be licensed. We will not accept licensing fees on research we charge users to access.
  • All licensed research will be clearly labeled with the licensees. No licensed research will be released without indicating the sources of licensing fees. Again, there will be no back channel influence. We’re open and transparent about our revenue sources.

In essence, we develop all of our research out in the open, and not only seek public comments, but keep those comments indefinitely as a record of the research creation process. If you believe we are biased or not doing our homework, you can call us out on it and it will be there in the record. Our philosophy involves cracking open the research process, and using our readers to eliminate bias and enhance the quality of the work.

On the back end, here’s how we handle this approach with licensees:

  • Licensees may propose paper topics. The topic may be accepted if it is consistent with the Securosis research agenda and goals, but only if it can be covered without bias and will be valuable to the end user community.
  • Analysts produce research according to their own research agendas, and may offer licensing under the same objectivity requirements.
  • The potential licensee will be provided an outline of our research positions and the potential research product so they can determine if it is likely to meet their objectives.
  • Once the licensee agrees, development of the primary research content begins, following the Totally Transparent Research process as outlined above. At this point, there is no money exchanged.
  • Upon completion of the paper, the licensee will receive a release candidate to determine whether the final result still meets their needs.
  • If the content does not meet their needs, the licensee is not required to pay, and the research will be released without licensing or with alternate licensees.
  • Licensees may host and reuse the content for the length of the license (typically one year). This includes placing the content behind a registration process, posting on white paper networks, or translation into other languages. The research will always be hosted at Securosis for free without registration.

Here is the language we currently place in our research project agreements:

Content will be created independently of LICENSEE with no obligations for payment. Once content is complete, LICENSEE will have a 3 day review period to determine if the content meets corporate objectives. If the content is unsuitable, LICENSEE will not be obligated for any payment and Securosis is free to distribute the whitepaper without branding or with alternate licensees, and will not complete any associated webcasts for the declining LICENSEE. Content licensing, webcasts and payment are contingent on the content being acceptable to LICENSEE. This maintains objectivity while limiting the risk to LICENSEE. Securosis maintains all rights to the content and to include Securosis branding in addition to any licensee branding.

Even this process itself is open to criticism. If you have questions or comments, you can email us or comment on the blog.