How Cloud Security Managers Should Respond to Meltdown and Spectre

I hope everyone enjoyed the holidays… just in time to return to work, catch up on email, and watch the entire Internet burn down thanks to a cluster of hardware vulnerabilities built into pretty much every computing platform available. I won’t go into details or background on Meltdown and Spectre (note: if I ever discover a vulnerability, I want it named “CutYourF-ingHeartOutWithSpoon”). Instead I want to talk about them in the context of the cloud, short-term and long-term implications, and some response strategies. These are incredibly serious vulnerabilities – not only due to their immediate implications, but also because they will draw increased scrutiny to a set of hardware weaknesses, which in turn are likely to require a generational fix (a computer generation – not your kids). Meltdown Briefly, Meltdown increases the risk of a multi-tenancy break. This has impacts on three levels: It potentially enables any instance or guest on a system to read all the memory on that system. This is the piece which cloud providers have almost completely patched. On a single system, it could also allow code in a container to read the memory of the entire server. This is likely also patched by cloud providers (AWS/Google/Microsoft). Because Function as a Service (‘serverless’) offerings are really implemented as code in containers, the same issues apply to these products. Meltdown is a privilege escalation vulnerability and requires a malicious process to be run on the system – you cannot use it to gain an initial foothold or exploitation, but to do things like steal secrets from memory once you have presence. Meltdown in its current form on major cloud providers is likely not an immediate security risk. But just to be safe I recommend immediately applying Meltdown patches at the operating system level to any instances you have running. This would have been far worse if there hadn’t been a coordinated disclosure between researchers, hardware and operating system vendors, and cloud providers. You may see some performance degradation, but anything that uses autoscaling shouldn’t really notice. Spectre Spectre is a different group of vulnerabilities which relies on a different set of hardware-related issues. Right now Spectre only allows access to memory the application already has access to. This is still a privilege escalation issue because it’s useful for things like allowing hostile JavaScript code in a browser access to data outside its sandbox. This also seems like it could be an issue for anything which runs multiple processes in a sandbox (such as containers), and might allow reading data from other guests or containers on the same host. Exploitation is difficult, the cloud providers are on it, and there is nothing to be done right now – other than to pay attention. So for both attacks, your short-term action is to patch instances and keep an eye on upcoming patches. Oh – and if you run a private cloud, you really need to patch everything yesterday and be prepared to replace all your hardware within the next few years. All your hardware. Oops. Long-term implications and recommendations These are complex vulnerabilities related to deeply embedded hardware functionality. Spectre itself is more an entire vulnerability/exploit class than a single patchable vulnerability. Right now we seem to have the protections we need available, and the performance implications appear manageable (although the performance impact will be costly for some customers). The bigger concern is that we don’t know what other variants of both vulnerability classes may appear (or be discovered by malicious actors who don’t make them public). The consensus among my researcher friends is that this is a new area of study; while it’s not completely novel, it’s definitely drawing highly intelligent and experienced eyeballs. I will be very surprised if we don’t see more variants and implications over the next few years. Hardware manufacturers need to update chip designs, which is a slow process, and even then they are likely to leave holes which researchers will eventually discover. Let’s not mince words – this is a very big deal for cloud computing. The immediate risk is very manageable but we need to be prepared for the long-term implications. As this evolves, here is what I recommend: Obviously, immediately patch all your operating systems on all your instances to the best of your ability. Hopefully cloud provider mitigations at the hypervisor level are already protecting you, but it’s still better to be safe. Start with a focus on instances where memory leaks are the worst threat. For highly sensitive workloads (e.g., encryption) immediately consider moving to dedicated tenancy and don’t run any less-privileged workloads on the same hardware. Dedicated tenancy means you rent a whole box from your cloud provider, and only your workloads run on it. This eliminates much of the concern of guest to host breaks. Migrate to dedicated PaaS where possible, especially for things like encryption operations. For example if you move to an AWS Elastic Load Balancer and perform discrete application data encryption in KMS, your crypto operations and keys are never exposed in the memory of any general-purpose system. This is the critical piece: the hardware underpinning these services isn’t used for anything other than the assigned service. So another tenant cannot run a malicious process to read the box’s physical memory. If you can’t run malicious code as a tenant, then even if you break multi-tenancy you still need to compromise the entire system – which cloud providers are damn good at preventing. Removing customers’ ability to run arbitrary processes is a massive roadblock to exploitation of these kinds of vulnerabilities. Continue to migrate workloads to Function as a Service (also called ‘serverless’ and ‘Lambda’), but recognize there still are risks. Moving to servlerless pushes more responsibility for mitigating future vulnerabilities in these (and any other) classes onto your cloud provider, but since tenants can run nearly arbitrary code there is always a chance of future issues. Right now my feeling is that the risk is low, and far lower than running things

Read Post

Totally Transparent Research is the embodiment of how we work at Securosis. It’s our core operating philosophy, our research policy, and a specific process. We initially developed it to help maintain objectivity while producing licensed research, but its benefits extend to all aspects of our business.

Going beyond Open Source Research, and a far cry from the traditional syndicated research model, we think it’s the best way to produce independent, objective, quality research.

Here’s how it works:

  • Content is developed ‘live’ on the blog. Primary research is generally released in pieces, as a series of posts, so we can digest and integrate feedback, making the end results much stronger than traditional “ivory tower” research.
  • Comments are enabled for posts. All comments are kept except for spam, personal insults of a clearly inflammatory nature, and completely off-topic content that distracts from the discussion. We welcome comments critical of the work, even if somewhat insulting to the authors. Really.
  • Anyone can comment, and no registration is required. Vendors or consultants with a relevant product or offering must properly identify themselves. While their comments won’t be deleted, the writer/moderator will “call out”, identify, and possibly ridicule vendors who fail to do so.
  • Vendors considering licensing the content are welcome to provide feedback, but it must be posted in the comments - just like everyone else. There is no back channel influence on the research findings or posts.
    Analysts must reply to comments and defend the research position, or agree to modify the content.
  • At the end of the post series, the analyst compiles the posts into a paper, presentation, or other delivery vehicle. Public comments/input factors into the research, where appropriate.
  • If the research is distributed as a paper, significant commenters/contributors are acknowledged in the opening of the report. If they did not post their real names, handles used for comments are listed. Commenters do not retain any rights to the report, but their contributions will be recognized.
  • All primary research will be released under a Creative Commons license. The current license is Non-Commercial, Attribution. The analyst, at their discretion, may add a Derivative Works or Share Alike condition.
  • Securosis primary research does not discuss specific vendors or specific products/offerings, unless used to provide context, contrast or to make a point (which is very very rare).
    Although quotes from published primary research (and published primary research only) may be used in press releases, said quotes may never mention a specific vendor, even if the vendor is mentioned in the source report. Securosis must approve any quote to appear in any vendor marketing collateral.
  • Final primary research will be posted on the blog with open comments.
  • Research will be updated periodically to reflect market realities, based on the discretion of the primary analyst. Updated research will be dated and given a version number.
    For research that cannot be developed using this model, such as complex principles or models that are unsuited for a series of blog posts, the content will be chunked up and posted at or before release of the paper to solicit public feedback, and provide an open venue for comments and criticisms.
  • In rare cases Securosis may write papers outside of the primary research agenda, but only if the end result can be non-biased and valuable to the user community to supplement industry-wide efforts or advances. A “Radically Transparent Research” process will be followed in developing these papers, where absolutely all materials are public at all stages of development, including communications (email, call notes).
    Only the free primary research released on our site can be licensed. We will not accept licensing fees on research we charge users to access.
  • All licensed research will be clearly labeled with the licensees. No licensed research will be released without indicating the sources of licensing fees. Again, there will be no back channel influence. We’re open and transparent about our revenue sources.

In essence, we develop all of our research out in the open, and not only seek public comments, but keep those comments indefinitely as a record of the research creation process. If you believe we are biased or not doing our homework, you can call us out on it and it will be there in the record. Our philosophy involves cracking open the research process, and using our readers to eliminate bias and enhance the quality of the work.

On the back end, here’s how we handle this approach with licensees:

  • Licensees may propose paper topics. The topic may be accepted if it is consistent with the Securosis research agenda and goals, but only if it can be covered without bias and will be valuable to the end user community.
  • Analysts produce research according to their own research agendas, and may offer licensing under the same objectivity requirements.
  • The potential licensee will be provided an outline of our research positions and the potential research product so they can determine if it is likely to meet their objectives.
  • Once the licensee agrees, development of the primary research content begins, following the Totally Transparent Research process as outlined above. At this point, there is no money exchanged.
  • Upon completion of the paper, the licensee will receive a release candidate to determine whether the final result still meets their needs.
  • If the content does not meet their needs, the licensee is not required to pay, and the research will be released without licensing or with alternate licensees.
  • Licensees may host and reuse the content for the length of the license (typically one year). This includes placing the content behind a registration process, posting on white paper networks, or translation into other languages. The research will always be hosted at Securosis for free without registration.

Here is the language we currently place in our research project agreements:

Content will be created independently of LICENSEE with no obligations for payment. Once content is complete, LICENSEE will have a 3 day review period to determine if the content meets corporate objectives. If the content is unsuitable, LICENSEE will not be obligated for any payment and Securosis is free to distribute the whitepaper without branding or with alternate licensees, and will not complete any associated webcasts for the declining LICENSEE. Content licensing, webcasts and payment are contingent on the content being acceptable to LICENSEE. This maintains objectivity while limiting the risk to LICENSEE. Securosis maintains all rights to the content and to include Securosis branding in addition to any licensee branding.

Even this process itself is open to criticism. If you have questions or comments, you can email us or comment on the blog.