Securosis

Research

Container Security 2018: Runtime Security Controls

After the focus on tools and processes in previous sections, we can now focus on containers in production systems. This includes which images are moved into production repositories, selecting and running containers, and the security of underlying host systems. Runtime Security The Control Plane: Our first order of business is ensuring the security of the control plane: tools for managing host operating systems, the scheduler, the container client, engine(s), the repository, and any additional deployment tools. As we advised for container build environment security, we recommend limiting access to specific administrative accounts: one with responsibility for operating and orchestrating containers, and another for system administration (including patching and configuration management). On-premise we recommend network and physical segregation, and for cloud and virtual systems we prefer logical segregation. The good news is that several third-party tools offer full identity and access management, LDAP/AD integration, and token-based SSO (i.e.: SAML) across systems. Resource Usage Analysis: Many readers are familiar with this for performance, but it can also offer insight into basic code security. Does the container allow port 22 (administration) access? Does the container try to update itself? What external systems and utilities does it depend upon? Any external resource usage is a potential attack point for attackers, so it’s good hygiene to limit ingress and egress points. To manage the scope of what containers can access, third-party tools can monitor runtime access to environment resources – both inside and outside the container. Usage analysis is basically automated review of resource requirements. This is useful in a number of ways – especially for firms moving from a monolithic architecture to microservices. Analysis can help developers understand which references they can remove from their code, and help operations narrow down roles and access privileges. Selecting the Right Image: We recommend establishing a trusted image repository and ensuring that your production environment can only pull containers from that trusted source. Ad hoc container management makes it entirely too easy for engineers to bypass security controls, so we recommend establishing trusted central repositories for production images. We also recommend scripting deployment to avoid manual intervention, and to ensure the latest certified container is always selected. This means checking application signatures in your scripts before putting containers into production, avoiding manual verification overhead or delay. Trusted repository and registry services can help by rejecting containers which are not properly signed. Fortunately many options are available, so pick one you like. Keep in mind that if you build many containers each day, a manual process will quickly break down. It is okay to have more than one image repository – if you are running across multiple cloud environments there are advantages to leveraging the native registry in each one. Immutable Images: Developers often leave shell access to container images so they can log into containers running in production. Their motivation is often debugging and on-the-fly code changes, both bad for consistency and security. Immutable containers – which do not allow ssh connections – prevent interactive real-time manipulation. They force developers to fix code in the development pipeline, and remove a principal attack path. Attackers routinely scan for ssh access to take over containers, and leverage them to attack underlying hosts and other containers. We strongly suggest use of immutable containers without ‘port 22’ access, and making sure that all container changes take place (with logging) in the build process, rather than in production. Input Validation: At startup containers accept parameters, configuration files, credentials, JSON, and scripts. In more aggressive scenarios ‘agile’ teams shove new code segments into containers as input variables, making existing containers behave in fun new ways. Validate that all input data is suitable and complies with policy, either manually or using a third-party security tool. You must ensure that each container receives the correct user and group IDs to map to the assigned view at the host layer. This can prevent someone from forcing a container to misbehave, or simply prevent dumb developer mistakes. Blast Radius: The cloud enables you to run different containers under different cloud user accounts, limiting the resources available to any given container. If an account or container set is compromised, the same cloud service restrictions which prevent tenants from interfering with each other will limit damage between your different accounts and projects. For more information see our reference material on limiting blast radius with user accounts. Container Group Segmentation: One of the principal benefits of container management systems is help scaling tasks across pools of shared servers. Each management platform offers a modular architecture, with scaling performed on node/minion/slave sub-groups, which in turn include a set of containers. Each node forms its own logical subnet, limiting network access between sets of containers. This segregation limits ‘blast radius’ by restricting which resources any container can access. It is up to application architects and security teams to leverage this construct to improve security. You can enforce this with network policies on the container manager service, or network security controls provided by your cloud vendor. Over and above this orchestration manager feature, third-party container security tools – whether running as an agent inside containers, or as part of underlying operation systems – can provide a type of logical network segmentation which further limits network connections between groups of containers. All together this offers fine-grained isolation of containers and container groups from each another. Platform Security Until recently, when someone talked about container security, they were really talking about how to secure the hypervisor and underlying operating system. So most articles and presentations on container security focuses on this single – admittedly important – facet. But we believe runtime security needs to encompass more than that, and we break the challenge into three areas: host OS hardening, isolation of namespaces, and segregation of workloads by trust level. Host OS/Kernel Hardening: Hardening is how we protect a host operating system from attacks and misuse. It typically starts with selection of a hardened variant of the operating system you will use. But while these versions

Share:
Read Post

Totally Transparent Research is the embodiment of how we work at Securosis. It’s our core operating philosophy, our research policy, and a specific process. We initially developed it to help maintain objectivity while producing licensed research, but its benefits extend to all aspects of our business.

Going beyond Open Source Research, and a far cry from the traditional syndicated research model, we think it’s the best way to produce independent, objective, quality research.

Here’s how it works:

  • Content is developed ‘live’ on the blog. Primary research is generally released in pieces, as a series of posts, so we can digest and integrate feedback, making the end results much stronger than traditional “ivory tower” research.
  • Comments are enabled for posts. All comments are kept except for spam, personal insults of a clearly inflammatory nature, and completely off-topic content that distracts from the discussion. We welcome comments critical of the work, even if somewhat insulting to the authors. Really.
  • Anyone can comment, and no registration is required. Vendors or consultants with a relevant product or offering must properly identify themselves. While their comments won’t be deleted, the writer/moderator will “call out”, identify, and possibly ridicule vendors who fail to do so.
  • Vendors considering licensing the content are welcome to provide feedback, but it must be posted in the comments - just like everyone else. There is no back channel influence on the research findings or posts.
    Analysts must reply to comments and defend the research position, or agree to modify the content.
  • At the end of the post series, the analyst compiles the posts into a paper, presentation, or other delivery vehicle. Public comments/input factors into the research, where appropriate.
  • If the research is distributed as a paper, significant commenters/contributors are acknowledged in the opening of the report. If they did not post their real names, handles used for comments are listed. Commenters do not retain any rights to the report, but their contributions will be recognized.
  • All primary research will be released under a Creative Commons license. The current license is Non-Commercial, Attribution. The analyst, at their discretion, may add a Derivative Works or Share Alike condition.
  • Securosis primary research does not discuss specific vendors or specific products/offerings, unless used to provide context, contrast or to make a point (which is very very rare).
    Although quotes from published primary research (and published primary research only) may be used in press releases, said quotes may never mention a specific vendor, even if the vendor is mentioned in the source report. Securosis must approve any quote to appear in any vendor marketing collateral.
  • Final primary research will be posted on the blog with open comments.
  • Research will be updated periodically to reflect market realities, based on the discretion of the primary analyst. Updated research will be dated and given a version number.
    For research that cannot be developed using this model, such as complex principles or models that are unsuited for a series of blog posts, the content will be chunked up and posted at or before release of the paper to solicit public feedback, and provide an open venue for comments and criticisms.
  • In rare cases Securosis may write papers outside of the primary research agenda, but only if the end result can be non-biased and valuable to the user community to supplement industry-wide efforts or advances. A “Radically Transparent Research” process will be followed in developing these papers, where absolutely all materials are public at all stages of development, including communications (email, call notes).
    Only the free primary research released on our site can be licensed. We will not accept licensing fees on research we charge users to access.
  • All licensed research will be clearly labeled with the licensees. No licensed research will be released without indicating the sources of licensing fees. Again, there will be no back channel influence. We’re open and transparent about our revenue sources.

In essence, we develop all of our research out in the open, and not only seek public comments, but keep those comments indefinitely as a record of the research creation process. If you believe we are biased or not doing our homework, you can call us out on it and it will be there in the record. Our philosophy involves cracking open the research process, and using our readers to eliminate bias and enhance the quality of the work.

On the back end, here’s how we handle this approach with licensees:

  • Licensees may propose paper topics. The topic may be accepted if it is consistent with the Securosis research agenda and goals, but only if it can be covered without bias and will be valuable to the end user community.
  • Analysts produce research according to their own research agendas, and may offer licensing under the same objectivity requirements.
  • The potential licensee will be provided an outline of our research positions and the potential research product so they can determine if it is likely to meet their objectives.
  • Once the licensee agrees, development of the primary research content begins, following the Totally Transparent Research process as outlined above. At this point, there is no money exchanged.
  • Upon completion of the paper, the licensee will receive a release candidate to determine whether the final result still meets their needs.
  • If the content does not meet their needs, the licensee is not required to pay, and the research will be released without licensing or with alternate licensees.
  • Licensees may host and reuse the content for the length of the license (typically one year). This includes placing the content behind a registration process, posting on white paper networks, or translation into other languages. The research will always be hosted at Securosis for free without registration.

Here is the language we currently place in our research project agreements:

Content will be created independently of LICENSEE with no obligations for payment. Once content is complete, LICENSEE will have a 3 day review period to determine if the content meets corporate objectives. If the content is unsuitable, LICENSEE will not be obligated for any payment and Securosis is free to distribute the whitepaper without branding or with alternate licensees, and will not complete any associated webcasts for the declining LICENSEE. Content licensing, webcasts and payment are contingent on the content being acceptable to LICENSEE. This maintains objectivity while limiting the risk to LICENSEE. Securosis maintains all rights to the content and to include Securosis branding in addition to any licensee branding.

Even this process itself is open to criticism. If you have questions or comments, you can email us or comment on the blog.