Securosis

Research

Evolving to Security Decision Support: Data to Intelligence

As we kicked off our Evolving to Security Decision Support series, the point we needed to make was the importance of enterprise visibility to the success of your security program. Given all the moving pieces in your environment – including the usage of various clouds (SaaS and IaaS), mobile devices, containers, and eventually IoT devices – it’s increasingly hard to know where all your critical data is and how it’s being used. So enterprise visibility is necessary, but not sufficient. You still need to figure out whether and how you are being attacked, as well as whether and how data and/or apps are being misused. Nobody gets credit just for knowing where you can be attacked. You get credit for stopping attacks and protecting critical data. Ultimately that’s all that matters. The good news is that many organizations already collect extensive security data (thanks, compliance!), so you have a base to work with. It’s really just a matter of turning all that security data into actual intelligence you can use for security decision support. The History of Security Monitoring Let’s start with some historical perspective on how we got here, and why many organizations already perform extensive security data collection. It all started in the early 2000s with deployment of the first SIEM, deployed to make sense of the avalanche of alerts coming from firewalls and intrusion detection gear. You remember those days, right? SIEM evolution was driven by the need to gather logs and generate reports to substantiate controls (thanks again, compliance!). So the SIEM products focused more on storing and gathering data than actually making sense of it. You could generate alerts on things you knew to look for, which typically meant you got pretty good at finding attacks you had already seen. But you were pretty limited in ability to detect attacks you hadn’t seen. SIEM technology continues to evolve, but mostly to add scale and data sources to keep up with the number of devices and amount of activity to be monitored. But that doesn’t really address the fact that many organizations don’t want more alerts – they want better alerts. To provide better alerts, two separate capabilities have come together in an interesting way: Threat Intelligence: SIEM rules were based on looking for what you had seen before, so you were limited in what you could look for. What if you could leverage attacks other companies have seen and look for those attacks, so you could anticipate what’s coming? That’s the driver for external threat intelligence. Security Analytics: The other capability isn’t exactly new – it’s using advanced math to look at the security data you’ve already collected to profile normal behaviors, and then look for stuff that isn’t normal and might be malicious. Call it anomaly detection, machine learning, or whatever – the concept is the same. Gather a bunch of security data, build mathematical profiles of normal activity, then look for activity that isn’t normal. Let’s consider both these capabilities to gain a better understanding how they work, and then we’ll be able to show how powerful integrating them can be for generating better alerts. Threat Intel Identifies What Could Happen Culturally, over the past 20 years, security folks were generally the kids who didn’t play well in the sandbox. Nobody wanted to appear vulnerable, so data breaches and successful attacks were the dirty little secret of security. Sure, they happen, but not to us. Yeah, right. There were occasional high-profile issues (like SQL*Slammer) which couldn’t be swept under the rug, but they hit everyone so weren’t that big a deal. But over the past 5 years a shift has occurred within security circles, borne out of necessity as most such things are. Security practitioners realized no one is perfect, and we can collectively improve our ability to defend ourselves by sharing information about adversary tactics and specific indicators from those attacks. This is something we dubbed “benefiting from the misfortune of others” a few years ago. Everyone benefits because once one of us is attacked, we all learn about that attack and can look for it. So the modern threat intelligence market emerged. In terms of the current state of threat intel, we typically see the following types of data shared within commercial services, industry groups/ISACs, and open source communities: Bad IP Addresses: IP addresses which behave badly, for instance by participating in a botnet or acting as a spam relay, should probably be blocked at your egress filter, because you know no good will come from communicating with that network. You can buy a blacklist of bad IP addresses, probably the lowest-hanging fruit in the threat intel world. Malware Indicators: Next-generation attack signatures can be gathered and shared to look for activity representative of typical attacks. You know these indicate an attack, so being able to look for them within your security monitors helps keep your defenses current. The key value of threat intel is to accelerate the human, as described in our Introduction to Threat Operations research. But what does that even mean? To illustrate a bit, let’s consider retrospective search. This involves being notified of a new attack via a threat intel feed, and using those indicators to mine your existing security data to see if you saw this attack before you knew to look for it: retrospective search. Of course it would be better to detect the attack when it happens, but the ability to go back and search for new indicators in old security data shortens the detection window. Another use of threat intel is to refine your hunting process. This involves having a hunter learn about a specific adversary’s tactics, and then undertake a hunt for that adversary. It’s not like the adversary is going to send out a memo detailing its primary TTPs, so threat intel is the way to figure out what they are likely to do. This makes the hunter much more efficient (“accelerating the human”) by focusing on typical tactics used by likely adversaries. Much of the threat intel available today is focused on data to be pumped into traditional controls, such as SIEM and egress

Share:
Read Post

Totally Transparent Research is the embodiment of how we work at Securosis. It’s our core operating philosophy, our research policy, and a specific process. We initially developed it to help maintain objectivity while producing licensed research, but its benefits extend to all aspects of our business.

Going beyond Open Source Research, and a far cry from the traditional syndicated research model, we think it’s the best way to produce independent, objective, quality research.

Here’s how it works:

  • Content is developed ‘live’ on the blog. Primary research is generally released in pieces, as a series of posts, so we can digest and integrate feedback, making the end results much stronger than traditional “ivory tower” research.
  • Comments are enabled for posts. All comments are kept except for spam, personal insults of a clearly inflammatory nature, and completely off-topic content that distracts from the discussion. We welcome comments critical of the work, even if somewhat insulting to the authors. Really.
  • Anyone can comment, and no registration is required. Vendors or consultants with a relevant product or offering must properly identify themselves. While their comments won’t be deleted, the writer/moderator will “call out”, identify, and possibly ridicule vendors who fail to do so.
  • Vendors considering licensing the content are welcome to provide feedback, but it must be posted in the comments - just like everyone else. There is no back channel influence on the research findings or posts.
    Analysts must reply to comments and defend the research position, or agree to modify the content.
  • At the end of the post series, the analyst compiles the posts into a paper, presentation, or other delivery vehicle. Public comments/input factors into the research, where appropriate.
  • If the research is distributed as a paper, significant commenters/contributors are acknowledged in the opening of the report. If they did not post their real names, handles used for comments are listed. Commenters do not retain any rights to the report, but their contributions will be recognized.
  • All primary research will be released under a Creative Commons license. The current license is Non-Commercial, Attribution. The analyst, at their discretion, may add a Derivative Works or Share Alike condition.
  • Securosis primary research does not discuss specific vendors or specific products/offerings, unless used to provide context, contrast or to make a point (which is very very rare).
    Although quotes from published primary research (and published primary research only) may be used in press releases, said quotes may never mention a specific vendor, even if the vendor is mentioned in the source report. Securosis must approve any quote to appear in any vendor marketing collateral.
  • Final primary research will be posted on the blog with open comments.
  • Research will be updated periodically to reflect market realities, based on the discretion of the primary analyst. Updated research will be dated and given a version number.
    For research that cannot be developed using this model, such as complex principles or models that are unsuited for a series of blog posts, the content will be chunked up and posted at or before release of the paper to solicit public feedback, and provide an open venue for comments and criticisms.
  • In rare cases Securosis may write papers outside of the primary research agenda, but only if the end result can be non-biased and valuable to the user community to supplement industry-wide efforts or advances. A “Radically Transparent Research” process will be followed in developing these papers, where absolutely all materials are public at all stages of development, including communications (email, call notes).
    Only the free primary research released on our site can be licensed. We will not accept licensing fees on research we charge users to access.
  • All licensed research will be clearly labeled with the licensees. No licensed research will be released without indicating the sources of licensing fees. Again, there will be no back channel influence. We’re open and transparent about our revenue sources.

In essence, we develop all of our research out in the open, and not only seek public comments, but keep those comments indefinitely as a record of the research creation process. If you believe we are biased or not doing our homework, you can call us out on it and it will be there in the record. Our philosophy involves cracking open the research process, and using our readers to eliminate bias and enhance the quality of the work.

On the back end, here’s how we handle this approach with licensees:

  • Licensees may propose paper topics. The topic may be accepted if it is consistent with the Securosis research agenda and goals, but only if it can be covered without bias and will be valuable to the end user community.
  • Analysts produce research according to their own research agendas, and may offer licensing under the same objectivity requirements.
  • The potential licensee will be provided an outline of our research positions and the potential research product so they can determine if it is likely to meet their objectives.
  • Once the licensee agrees, development of the primary research content begins, following the Totally Transparent Research process as outlined above. At this point, there is no money exchanged.
  • Upon completion of the paper, the licensee will receive a release candidate to determine whether the final result still meets their needs.
  • If the content does not meet their needs, the licensee is not required to pay, and the research will be released without licensing or with alternate licensees.
  • Licensees may host and reuse the content for the length of the license (typically one year). This includes placing the content behind a registration process, posting on white paper networks, or translation into other languages. The research will always be hosted at Securosis for free without registration.

Here is the language we currently place in our research project agreements:

Content will be created independently of LICENSEE with no obligations for payment. Once content is complete, LICENSEE will have a 3 day review period to determine if the content meets corporate objectives. If the content is unsuitable, LICENSEE will not be obligated for any payment and Securosis is free to distribute the whitepaper without branding or with alternate licensees, and will not complete any associated webcasts for the declining LICENSEE. Content licensing, webcasts and payment are contingent on the content being acceptable to LICENSEE. This maintains objectivity while limiting the risk to LICENSEE. Securosis maintains all rights to the content and to include Securosis branding in addition to any licensee branding.

Even this process itself is open to criticism. If you have questions or comments, you can email us or comment on the blog.