Evolving to Security Decision Support: Laying the Foundation
As we resume our series on Evolving to Security Decision Support, let’s review where we’ve been so far. The first step in making better security decisions is ensuring you have full visibility of your enterprise assets, because if you don’t know assets exist, you cannot make intelligent decision about protecting them. Next we discussed how threat intelligence and security analytics can be brought to bear to get both internal and external views of your attack environment, again with the goal of turning data into information you can use to better prioritize efforts. Once you get to this stage, you have the basic capabilities to make better security decisions. Then the key is to integrate these practices into your day-to-day activities. This requires process changes and a focus on instrumentation within your security program to track effectiveness in order to constantly improve performance. Implementing SDS To implement Security Decision Support you need a dashboard of sorts to help track all the information coming into your environment, to help decide what to do and why. You need a place to visualize alerts and determine their relative priority. This entails tuning your monitors to your particular environment so prioritization improves over time. We know – the last thing you want is another dashboard to deal with. Yet another place to collect security data, which you need to keep current and tuned. But we aren’t saying this needs to be a new system. You have a bunch of tools in place which certainly could provide these capabilities. Your existing SIEM, security analytics product, and vulnerability management service, just to name a few. So you may already have a platform in place, but these advanced capabilities have yet to be implemented or fully utilized. That’s where the process changes come into play. But first things first. Before you worry about what tool will to do this work, let’s go through the capabilities required to implement this vision. The first thing you need in a decision support platform to visualize security issues is, well, data. So what will feed this system? You need to understand your technology environment so integration with your organizational asset inventory (usually a CMDB) provides devices and IP addresses. You’ll also want information from your enterprise directory, which provides people and can be used to understand a specific user’s role and what their entitlements should be. Finally you need security data from security monitors – including any SIEM, analytics, vulnerability management, EDR, hunting, IPS/IDS, etc. You’ll also need to categorize both devices and users based on their importance and risk to the organization. Not to say some employees are more important than others as humans (everyone is important – how’s that for political correctness?). But some employees pose more risk to the organization than others. That’s what you need to understand, because attacks against high-risk employees and systems should be dealt with first. We tend to opt for simplicity here, suggesting 3-4 different categories with very original names: High: These are the folks and systems which, if compromised, would cause a bad day for pretty much everyone. Senior management fits into this category, as well as resources and systems with access to the most sensitive data in your enterprise. This category poses risk to the entire enterprise. Medium: These employees and systems will cause problems if stolen or compromised. The difference is that the damage would be contained. Meaning these folks can only access data for a business unit or location, not the entire enterprise. Low: These people and systems don’t really have access to much of import. To be clear, there is enterprise risk associated with this category, but it’s indirect. Meaning an adversary could use a low-risk device or system to gain a foothold in your organization, and then attack stuff in a higher-risk category. We recommend you categorize adversaries and attack types as well. Threat intelligence can help you determine which tactics are associated with which adversaries, and perhaps prioritize specific attackers (and tactics) by motivation to attack your environment. Once this is implemented you will have a clear sense of what needs to happen first, based on the type of attack and adversary; and the importance of the device, user and/or system. It’s a kind of priority score but security marketeers call it a risk score. This is analogous to a quantitative financial trading system. You want to take most of the emotion out of decisions, so you can get down to what is best for the organization. Many experienced practitioners push back on this concept, preferring to make decisions based on their gut – or even worse, using a FIFO (First In, First Out) model. We’ll just point out that pretty much every major breach over the last 5 years produced multiple alerts of attack in progress, and opportunities to deal with it, before it became a catastrophe. But for whatever reason, those attacks weren’t dealt with. So having a machine tell you what to focus on can go a long way toward ensuring you don’t miss major attacks. The final output of a Security Decision Support process is a decision about what needs to happen – meaning you will need to actually do the work. So integration with a security orchestration and automation platform can help make changes faster and more reliable. You will probably want to send the required task(s) to a work management system (trouble ticketing, etc.) to route to Operations, and to track remediation. Feedback Loop We call Security Decision Support a process, which means it needs to adapt and evolve to both your changing environment and new attacks and adversaries. You want a feedback loop integrated with your operational platform, learning over time. As with tuning any other system, you should pay attention to: False Negatives: Where did the system miss? Why? A false negative is something to take very seriously, because it means you didn’t catch a legitimate attack. Unfortunately you might not know about a false negative until you get a breach notification. Many organizations have started threat hunting to find active adversaries their security monitoring system miss. False Positives: A bit