Securosis

Research

Introducing Data Guardrails and Behavioral Analytics: Understand the Mission

After over 25 years of the modern IT security industry, breaches still happen at an alarming rate. Yes, that’s fairly obvious but still disappointing, given the billions spent every year in efforts to remedy the situation. Over the past decade the mainstays of security controls have undergone the next generation treatment – initially firewalls and more recently endpoint security. New analytical techniques have been mustered to examine infrastructure logs in more sophisticated fashion. But the industry seems to keep missing the point. The objective of nearly every hacking campaign is (still) to steal data. So why focus on better infrastructure security controls and better analytics of said infrastructure? Mostly because data security is hard. The harder the task, the less likely overwhelmed organizations will have the fortitude to make necessary changes. To be clear, we totally understand the need to live to fight another day. That’s the security person’s ethos, as it must be. There are devices to clean up, incidents to respond to, reports to write, and new architectures to figure out. The idea of tackling something nebulous like data security, with no obvious solution, can remain a bridge too far. Or is it? The time has come to revisit data security, and to utilize many of the new techniques pioneered for infrastructure to address the insider threat where it appears: attacking data. So our new series, Protecting What Matters: Introducing Data Guardrails and Behavioral Analytics, will introduce some new practices and highlight new approaches to protecting data. Before we get started, let’s send a shout-out to Box for agreeing to license this content when we finish up this series. Without clients like Box, who understand the need for forward-looking research to tell you where things are going, not reports telling you where they’ve been, we wouldn’t be able to produce research like this. Understanding Insider Risk While security professionals like to throw around the term “insider threat”, it’s often nebulously defined. In reality it includes multiple categories, including external threats which leverage insider access. We believe to truly address a risk you first need to understand it (call us crazy). To break down the first level of the insider threat, let’s consider its typical risk categories: Accidental Misuse: In this scenario the insider doesn’t do anything malicious, but makes a mistake which results in data loss. For example a customer service rep could respond to an email sent by a customer which includes private account info. It’s not like the rep is trying to violate policy, but they didn’t take the time to look at the message and clear out any private data. Tricked into Unwanted Actions: Employees are human, and can be duped into doing the wrong thing. Phishing is a great example. Or providing access to a folder based on a call from someone impersonating an employee. Again, this isn’t malicious, but it can still cause a breach. Malicious Misuse: Sometimes you need to deal with the reality of a malicious insider intentionally stealing data. In the first two categories the person isn’t trying to mask their behavior. In this scenario they are deliberately obfuscating, which that means you need different tactics to detect and prevent the activity. Account Takeover: This category reflects the fact that once an external adversary has presence on a device, they become an ‘insider’; with a compromised device and account, they have access to critical data. We need to consider these categories in the context of adversaries so you can properly align your security architecture. So who are the main adversaries trying to access your stuff? Some coarse-grained categories follows: unsophisticated (using widely available tools), organized crime, competitors, state-sponsored, and finally actual insiders. Once you have figured out your most likely adversary and their typical tactics, you can design a set of controls to effectively protect your data. For example an organized crime faction looks to access data related to banking or personal information for identity theft. But a competitor is more likely looking for product plans or pricing strategies. You can (and should) design your data protection strategy with these likely adversaries in mind, to help prioritize what to protect and how. Now that you understand your adversaries and can infer their primary tactics, you have a better understanding of their mission. Then you can select a data security architecture to minimize risk, and optimally prevent any data loss. But that requires us to use different tactics than would normally be considered data security. A New Way to Look at Data Security If you surveyed security professionals and asked what data security means to them, they’d likely say either encryption or Data Loss Prevention (DLP). When all you have is a hammer, everything looks like a nail, and for a long time those two have been the hammers available to us. Of course the fact that we want to expand our perspective a bit doesn’t mean DLP and encryption no longer have any roles to play in data protection. Of course they do. But we can supplement them with some new tactics. Data Guardrails: We have defined Guardrails as a means to enforce best practices without slowing down or impacting typical operations. Typically used within the context of cloud security (like, er, DisruptOps), a data guardrail enables data to be used in certain ways while blocking unauthorized usage. To bust out an old network security term, you can think of guardrails as like “default-deny” for data. You define the set of acceptable practices, and don’t allow anything else. Data Behavioral Analytics: Many of you have heard of UBA (User Behavioral Analytics), where all user activity is profiled, and you then look for anomalous activities which could indicate one of the insider risk categories above. What if you turned UBA inside-out and focused on the data? Using similar analytics you could profile the usage of all the data in your environment, and then look for abnormal patterns which warrant investigation. We’ll call this DataBA because your database administrators might be a little peeved if we horned in on their job title. Our next post will dig farther into these new concepts of

Share:
Read Post

Totally Transparent Research is the embodiment of how we work at Securosis. It’s our core operating philosophy, our research policy, and a specific process. We initially developed it to help maintain objectivity while producing licensed research, but its benefits extend to all aspects of our business.

Going beyond Open Source Research, and a far cry from the traditional syndicated research model, we think it’s the best way to produce independent, objective, quality research.

Here’s how it works:

  • Content is developed ‘live’ on the blog. Primary research is generally released in pieces, as a series of posts, so we can digest and integrate feedback, making the end results much stronger than traditional “ivory tower” research.
  • Comments are enabled for posts. All comments are kept except for spam, personal insults of a clearly inflammatory nature, and completely off-topic content that distracts from the discussion. We welcome comments critical of the work, even if somewhat insulting to the authors. Really.
  • Anyone can comment, and no registration is required. Vendors or consultants with a relevant product or offering must properly identify themselves. While their comments won’t be deleted, the writer/moderator will “call out”, identify, and possibly ridicule vendors who fail to do so.
  • Vendors considering licensing the content are welcome to provide feedback, but it must be posted in the comments - just like everyone else. There is no back channel influence on the research findings or posts.
    Analysts must reply to comments and defend the research position, or agree to modify the content.
  • At the end of the post series, the analyst compiles the posts into a paper, presentation, or other delivery vehicle. Public comments/input factors into the research, where appropriate.
  • If the research is distributed as a paper, significant commenters/contributors are acknowledged in the opening of the report. If they did not post their real names, handles used for comments are listed. Commenters do not retain any rights to the report, but their contributions will be recognized.
  • All primary research will be released under a Creative Commons license. The current license is Non-Commercial, Attribution. The analyst, at their discretion, may add a Derivative Works or Share Alike condition.
  • Securosis primary research does not discuss specific vendors or specific products/offerings, unless used to provide context, contrast or to make a point (which is very very rare).
    Although quotes from published primary research (and published primary research only) may be used in press releases, said quotes may never mention a specific vendor, even if the vendor is mentioned in the source report. Securosis must approve any quote to appear in any vendor marketing collateral.
  • Final primary research will be posted on the blog with open comments.
  • Research will be updated periodically to reflect market realities, based on the discretion of the primary analyst. Updated research will be dated and given a version number.
    For research that cannot be developed using this model, such as complex principles or models that are unsuited for a series of blog posts, the content will be chunked up and posted at or before release of the paper to solicit public feedback, and provide an open venue for comments and criticisms.
  • In rare cases Securosis may write papers outside of the primary research agenda, but only if the end result can be non-biased and valuable to the user community to supplement industry-wide efforts or advances. A “Radically Transparent Research” process will be followed in developing these papers, where absolutely all materials are public at all stages of development, including communications (email, call notes).
    Only the free primary research released on our site can be licensed. We will not accept licensing fees on research we charge users to access.
  • All licensed research will be clearly labeled with the licensees. No licensed research will be released without indicating the sources of licensing fees. Again, there will be no back channel influence. We’re open and transparent about our revenue sources.

In essence, we develop all of our research out in the open, and not only seek public comments, but keep those comments indefinitely as a record of the research creation process. If you believe we are biased or not doing our homework, you can call us out on it and it will be there in the record. Our philosophy involves cracking open the research process, and using our readers to eliminate bias and enhance the quality of the work.

On the back end, here’s how we handle this approach with licensees:

  • Licensees may propose paper topics. The topic may be accepted if it is consistent with the Securosis research agenda and goals, but only if it can be covered without bias and will be valuable to the end user community.
  • Analysts produce research according to their own research agendas, and may offer licensing under the same objectivity requirements.
  • The potential licensee will be provided an outline of our research positions and the potential research product so they can determine if it is likely to meet their objectives.
  • Once the licensee agrees, development of the primary research content begins, following the Totally Transparent Research process as outlined above. At this point, there is no money exchanged.
  • Upon completion of the paper, the licensee will receive a release candidate to determine whether the final result still meets their needs.
  • If the content does not meet their needs, the licensee is not required to pay, and the research will be released without licensing or with alternate licensees.
  • Licensees may host and reuse the content for the length of the license (typically one year). This includes placing the content behind a registration process, posting on white paper networks, or translation into other languages. The research will always be hosted at Securosis for free without registration.

Here is the language we currently place in our research project agreements:

Content will be created independently of LICENSEE with no obligations for payment. Once content is complete, LICENSEE will have a 3 day review period to determine if the content meets corporate objectives. If the content is unsuitable, LICENSEE will not be obligated for any payment and Securosis is free to distribute the whitepaper without branding or with alternate licensees, and will not complete any associated webcasts for the declining LICENSEE. Content licensing, webcasts and payment are contingent on the content being acceptable to LICENSEE. This maintains objectivity while limiting the risk to LICENSEE. Securosis maintains all rights to the content and to include Securosis branding in addition to any licensee branding.

Even this process itself is open to criticism. If you have questions or comments, you can email us or comment on the blog.