Securosis

Research

Understanding and Selecting RASP 2019: Use Cases

Updated 9-13 to include business requirements The primary function of RASP is to protect web applications against known and emerging threats. In some cases it is deployed to block attacks at the application layer, before vulnerabilities can be exploited, but in many cases RASP tools process a request until it detects an attack and then blocks the action. Astute readers will notice that these are basically the classic use cases for Intrusion Detection Systems (IDS) and Web Application Firewalls (WAFs). So why look for something new, if other tools in the market already provide the same application security benefits? The answer is not in what RASP does, but rather in how it does works, which makes it more effective in a wide range of scenarios. Let’s delve into detail about what clients are asking for, so we can bring this into focus. Primary Market Drivers RASP is a relatively new technology, so current market drivers are tightly focused on addressing the security needs of two distinct “buying centers” which have been largely unaddressed by existing security applications. We discovered this important change since our last report in 2017 through hundreds of conversations with buyers, who expressed remarkably consistent requirements. The two “buying centers” are security and application development teams. Security teams are looking for a reliable WAF replacement without burdensome management requirements, and development teams ask for a security technology to protect applications within the framework of existing development processes. The security team requirement is controversial, so let’s start with some background on WAF functions and usability. It’s is essential to understand the problems driving firms toward RASP. Web Application Firewalls typically employ two methods of threat detection; blacklisting and whitelisting. Blacklisting is detection – and often blocking – of known attack patterns spotted within incoming application requests. SQL injection is a prime example. Blacklisting is useful for screening out many basic attacks against applications, but new attack variations keep showing up, so blacklists cannot stay current, and attackers keep finding ways to bypass them. SQL injection and its many variants is the best illustration. But whitelisting is where WAFs provide their real value. A whitelist is created by watching and learning acceptable application behaviors, recording legitimate behaviors over time, and preventing any requests which do not match the approved behavior list. This approach offers substantial advantages over blacklisting: the list is specific to the application monitored, which makes it feasible to enumerate good functions – instead of trying to catalog every possible malicious request – and therefore easier (and faster) to spot undesirable behavior. Unfortunately, developers complain that in the normal course of application deployment, a WAF can never complete whitelist creation – ‘learning’ – before the next version of the application is ready for deployment. The argument is that WAFs are inherently too slow to keep up with modern software development, so they devolve to blacklist enforcement. Developers and IT teams alike complain that WAF is not fully API-enabled, and that setup requires major manual effort. Security teams complain they need full-time personnel to manage and tweak rules. And both groups complain that, when they try to deploy into Infrastructure as a Service (IaaS) public clouds, the lack of API support is a deal-breaker. Customers also complain of deficient vendor support beyond basic “virtual appliance” scenarios – including a lack of support for cloud-native constructs like application auto-scaling, ephemeral application stacks, templating, and scripting/deployment support for the cloud. As application teams become more agile, and as firms expand their cloud footprint, traditional WAF becomes less useful. To be clear, WAF can provide real value – especially commercial WAF “Security as a Service” offerings, which focus on blacklisting and some additional protections like DDoS mitigation. These are commonly run in the cloud as a proxy service, often filtering requests “in the cloud” before they pass into your application and/or RASP solution. But they are limited to a ‘Half-a-WAF’ role – without the sophistication or integration to leverage whitelisting. Traditional WAF platforms continue to work for on-premise applications with slower deployment, where the WAF has time to build and leverage a whitelist. So existing WAF is largely not being “ripped and replaced”, but it is largely unused in the cloud and by more agile development teams. So security teams are looking for an effective application security tool to replace WAF, which is easier to manage. They need to cover application defects and technical debt – not every defect can be fixed in a timely fashion in code. Developer requirements are more nuanced: they cite the same end goal, but tend to ask which solutions can be fully embedded into existing application build and certification processes. To work with development pipelines, security tools need to go the extra mile, protecting against attacks and accommodating the disruption underway in the developer community. A solution must be as agile as application development, which often starts with compatible automation capabilities. It needs to scale with the application, typically by being bundled with the application stack at build time. It should ‘understand’ the application and tailor its protection to the application runtime. A security tool should not require that developers be security experts. Development teams working to “shift left” to get security metrics and instrumentation earlier in their process want tools which work in pre-production, as well as production. RASP offers a distinct blend of capabilities and usability options which make it a good fit for these use cases. This is why, over the last three years, we have been fielding several calls each week to discuss it. Functional Requirements The market drivers mentioned above change traditional functional requirements – the features buyers are looking for. Effectiveness: This seems like an odd buyer requirement. Why buy a product which does not actually work? The short answer is ‘false positives’ that waste time and effort. The longer answer is many security tools don’t work well, produce too many false positives to be usable, or require so much maintenance that building your bespoke seems like a better

Share:
Read Post

Totally Transparent Research is the embodiment of how we work at Securosis. It’s our core operating philosophy, our research policy, and a specific process. We initially developed it to help maintain objectivity while producing licensed research, but its benefits extend to all aspects of our business.

Going beyond Open Source Research, and a far cry from the traditional syndicated research model, we think it’s the best way to produce independent, objective, quality research.

Here’s how it works:

  • Content is developed ‘live’ on the blog. Primary research is generally released in pieces, as a series of posts, so we can digest and integrate feedback, making the end results much stronger than traditional “ivory tower” research.
  • Comments are enabled for posts. All comments are kept except for spam, personal insults of a clearly inflammatory nature, and completely off-topic content that distracts from the discussion. We welcome comments critical of the work, even if somewhat insulting to the authors. Really.
  • Anyone can comment, and no registration is required. Vendors or consultants with a relevant product or offering must properly identify themselves. While their comments won’t be deleted, the writer/moderator will “call out”, identify, and possibly ridicule vendors who fail to do so.
  • Vendors considering licensing the content are welcome to provide feedback, but it must be posted in the comments - just like everyone else. There is no back channel influence on the research findings or posts.
    Analysts must reply to comments and defend the research position, or agree to modify the content.
  • At the end of the post series, the analyst compiles the posts into a paper, presentation, or other delivery vehicle. Public comments/input factors into the research, where appropriate.
  • If the research is distributed as a paper, significant commenters/contributors are acknowledged in the opening of the report. If they did not post their real names, handles used for comments are listed. Commenters do not retain any rights to the report, but their contributions will be recognized.
  • All primary research will be released under a Creative Commons license. The current license is Non-Commercial, Attribution. The analyst, at their discretion, may add a Derivative Works or Share Alike condition.
  • Securosis primary research does not discuss specific vendors or specific products/offerings, unless used to provide context, contrast or to make a point (which is very very rare).
    Although quotes from published primary research (and published primary research only) may be used in press releases, said quotes may never mention a specific vendor, even if the vendor is mentioned in the source report. Securosis must approve any quote to appear in any vendor marketing collateral.
  • Final primary research will be posted on the blog with open comments.
  • Research will be updated periodically to reflect market realities, based on the discretion of the primary analyst. Updated research will be dated and given a version number.
    For research that cannot be developed using this model, such as complex principles or models that are unsuited for a series of blog posts, the content will be chunked up and posted at or before release of the paper to solicit public feedback, and provide an open venue for comments and criticisms.
  • In rare cases Securosis may write papers outside of the primary research agenda, but only if the end result can be non-biased and valuable to the user community to supplement industry-wide efforts or advances. A “Radically Transparent Research” process will be followed in developing these papers, where absolutely all materials are public at all stages of development, including communications (email, call notes).
    Only the free primary research released on our site can be licensed. We will not accept licensing fees on research we charge users to access.
  • All licensed research will be clearly labeled with the licensees. No licensed research will be released without indicating the sources of licensing fees. Again, there will be no back channel influence. We’re open and transparent about our revenue sources.

In essence, we develop all of our research out in the open, and not only seek public comments, but keep those comments indefinitely as a record of the research creation process. If you believe we are biased or not doing our homework, you can call us out on it and it will be there in the record. Our philosophy involves cracking open the research process, and using our readers to eliminate bias and enhance the quality of the work.

On the back end, here’s how we handle this approach with licensees:

  • Licensees may propose paper topics. The topic may be accepted if it is consistent with the Securosis research agenda and goals, but only if it can be covered without bias and will be valuable to the end user community.
  • Analysts produce research according to their own research agendas, and may offer licensing under the same objectivity requirements.
  • The potential licensee will be provided an outline of our research positions and the potential research product so they can determine if it is likely to meet their objectives.
  • Once the licensee agrees, development of the primary research content begins, following the Totally Transparent Research process as outlined above. At this point, there is no money exchanged.
  • Upon completion of the paper, the licensee will receive a release candidate to determine whether the final result still meets their needs.
  • If the content does not meet their needs, the licensee is not required to pay, and the research will be released without licensing or with alternate licensees.
  • Licensees may host and reuse the content for the length of the license (typically one year). This includes placing the content behind a registration process, posting on white paper networks, or translation into other languages. The research will always be hosted at Securosis for free without registration.

Here is the language we currently place in our research project agreements:

Content will be created independently of LICENSEE with no obligations for payment. Once content is complete, LICENSEE will have a 3 day review period to determine if the content meets corporate objectives. If the content is unsuitable, LICENSEE will not be obligated for any payment and Securosis is free to distribute the whitepaper without branding or with alternate licensees, and will not complete any associated webcasts for the declining LICENSEE. Content licensing, webcasts and payment are contingent on the content being acceptable to LICENSEE. This maintains objectivity while limiting the risk to LICENSEE. Securosis maintains all rights to the content and to include Securosis branding in addition to any licensee branding.

Even this process itself is open to criticism. If you have questions or comments, you can email us or comment on the blog.