Securosis

Research

Enterprise DevSecOps: Security Planning

This post is intended to help security folks create an outline or structure for an application security program. We are going to answer such common questions as “How do we start building out an application security strategy?”, “How do I start incorporating DevSecOps?” and “What application security standards should I follow?”. I will discuss the Software Development Lifecycle (SDLC), introduce security items to consider as you put your plan in place, and reference some application security standards for use as guideposts for what to protect against. This post will help your strategy; the next one will cover tactical tool selection. Security Planning and your SDLC A Secure Software Development Lifecycle (S-SDLC) essentially describes how security fits into the different phases of a Software Development Lifecycle. We will look at each phase in an SDLC and discuss which security tools and techniques are appropriate. Note that an S-SDLC is typically drawn as a waterfall development process, with different phases in a linear progression, but that’s really just for clearer depiction – the actual SDLC which is being secured is as likely to be Agile, Extreme, or Spiral as Waterfall. There are good reasons to base an S-SDLC on a more modern SDLC; but the architecture, design, development, testing, and deployment phases all map well to development stages in any development process. They provide a good jumping-off point to adapt current models and processes into a DevOps framework. As in our previous post, we want you to think of the S-SDLC as a framework for building your security program, not a full step-by-step process. We recognize this is a departure from what is taught in classrooms and wikis, but it is better for planning security in each phase. Define and Architect Reference Security Architectures: Reference security architectures exist for different types of applications and services, including web applications, data processing applications, identity and access management services for applications, stream/event processing, messaging, and so on. The architectures are even more effective in public cloud environments, Kubernetes clusters, and service mesh environments – where we can tightly control via policy how each application operates and communicates. With cloud services we recommend you leverage service provider guidelines on deployment security, and while they may not call them ‘reference security architectures’ they do offer them. Educate yourself on the application platforms and ask software designers and architects which methods they employ. Do not be surprised if for legacy applications they give you a blank stare. But new applications should include plans for process isolation, segregation, and data security, with a full IAM model to promote segregation of duties and data access control. Operational Standards: Work with your development teams to define minimal security testing requirements, and critical and high priority issues. You will need to negotiate which security flaws will fail a build, and define the process in advance. You will probably need an agreement on timeframes for fixing issues, and some type of virtual patching to address hard-to-fix application security issues. You need to define these things up front and make sure your development and IT partners agree. Security Requirements: Just as with minimum functional tests which must run prior to code acceptance, you’ll have a set of security tests you run prior to deployment. These may be an agreed upon battery of unit tests for specific threats your which team writes. Or you may require all OWASP Top Ten vulnerabilities be mitigated in code or supporting products, mapping each threat to a specific security control for all web applications. Regardless of what you choose, your baseline requirements should account for new functionality as well as old. A growing body of tests requires more resources for validation and can slow your test and deployment cycle over time, so you have some decisions to make regarding which tests can block a release vs. what you scan for post-production. Monitoring and Metrics: If you will make small iterative improvements with each release, what needs fixing? Which code modules are problematic for security? What is working and how can you prove it? Metrics are key to answering all these questions. You need to think about what data you want to collect and build it into your CI:CD and production environments to measure how your scripts and tests perform. That means you need to engage developers and IT personnel in collecting data. You’ll continually evolve collection and use of metrics, but plan for basic collection and dissemination of data from the get-go. Design Security Design Principles: Some application security design and operational principles offer significant security improvement. Things like ephemeral instances to aid patching and reduce attacker persistence, immutable services to remove attack surface, configuration management to ensure servers and applications are properly set up, templating environments for consistent cloud deployment, automated patching, segregation of duties by locking development and QA personnel out of production resources, and so on. Just as important, these approaches are key to DevOps because they make delivery and management of software faster and easier. It sounds like a lot to tackle, but IT and development pitch in as it makes their lives easier too. Secure the Deployment Pipeline: With both development and production environments more locked down, development and test servers become more attractive targets. Traditionally these environments run with little or no security. But the need for secure source code management, build servers, and deployment pipelines is growing. And as CI/CD pipelines offer an automated pathway into production, you’ll need at minimum stricter access controls for these systems – particularly build servers and code repositories. And given scripts running continuously in the background with minimal human oversight, you’ll need additional monitoring to catch errors and misuse. Many of the tools offer good security, with digital fingerprinting, 2FA, logging, role-based access control, and other security features. When deployed in cloud environments, where the management plane allows control of your entire environment, great care must be taken with access controls and segregation of duties. Threat Modeling: Threat modeling remains one of the most productive exercises

Share:
Read Post

Totally Transparent Research is the embodiment of how we work at Securosis. It’s our core operating philosophy, our research policy, and a specific process. We initially developed it to help maintain objectivity while producing licensed research, but its benefits extend to all aspects of our business.

Going beyond Open Source Research, and a far cry from the traditional syndicated research model, we think it’s the best way to produce independent, objective, quality research.

Here’s how it works:

  • Content is developed ‘live’ on the blog. Primary research is generally released in pieces, as a series of posts, so we can digest and integrate feedback, making the end results much stronger than traditional “ivory tower” research.
  • Comments are enabled for posts. All comments are kept except for spam, personal insults of a clearly inflammatory nature, and completely off-topic content that distracts from the discussion. We welcome comments critical of the work, even if somewhat insulting to the authors. Really.
  • Anyone can comment, and no registration is required. Vendors or consultants with a relevant product or offering must properly identify themselves. While their comments won’t be deleted, the writer/moderator will “call out”, identify, and possibly ridicule vendors who fail to do so.
  • Vendors considering licensing the content are welcome to provide feedback, but it must be posted in the comments - just like everyone else. There is no back channel influence on the research findings or posts.
    Analysts must reply to comments and defend the research position, or agree to modify the content.
  • At the end of the post series, the analyst compiles the posts into a paper, presentation, or other delivery vehicle. Public comments/input factors into the research, where appropriate.
  • If the research is distributed as a paper, significant commenters/contributors are acknowledged in the opening of the report. If they did not post their real names, handles used for comments are listed. Commenters do not retain any rights to the report, but their contributions will be recognized.
  • All primary research will be released under a Creative Commons license. The current license is Non-Commercial, Attribution. The analyst, at their discretion, may add a Derivative Works or Share Alike condition.
  • Securosis primary research does not discuss specific vendors or specific products/offerings, unless used to provide context, contrast or to make a point (which is very very rare).
    Although quotes from published primary research (and published primary research only) may be used in press releases, said quotes may never mention a specific vendor, even if the vendor is mentioned in the source report. Securosis must approve any quote to appear in any vendor marketing collateral.
  • Final primary research will be posted on the blog with open comments.
  • Research will be updated periodically to reflect market realities, based on the discretion of the primary analyst. Updated research will be dated and given a version number.
    For research that cannot be developed using this model, such as complex principles or models that are unsuited for a series of blog posts, the content will be chunked up and posted at or before release of the paper to solicit public feedback, and provide an open venue for comments and criticisms.
  • In rare cases Securosis may write papers outside of the primary research agenda, but only if the end result can be non-biased and valuable to the user community to supplement industry-wide efforts or advances. A “Radically Transparent Research” process will be followed in developing these papers, where absolutely all materials are public at all stages of development, including communications (email, call notes).
    Only the free primary research released on our site can be licensed. We will not accept licensing fees on research we charge users to access.
  • All licensed research will be clearly labeled with the licensees. No licensed research will be released without indicating the sources of licensing fees. Again, there will be no back channel influence. We’re open and transparent about our revenue sources.

In essence, we develop all of our research out in the open, and not only seek public comments, but keep those comments indefinitely as a record of the research creation process. If you believe we are biased or not doing our homework, you can call us out on it and it will be there in the record. Our philosophy involves cracking open the research process, and using our readers to eliminate bias and enhance the quality of the work.

On the back end, here’s how we handle this approach with licensees:

  • Licensees may propose paper topics. The topic may be accepted if it is consistent with the Securosis research agenda and goals, but only if it can be covered without bias and will be valuable to the end user community.
  • Analysts produce research according to their own research agendas, and may offer licensing under the same objectivity requirements.
  • The potential licensee will be provided an outline of our research positions and the potential research product so they can determine if it is likely to meet their objectives.
  • Once the licensee agrees, development of the primary research content begins, following the Totally Transparent Research process as outlined above. At this point, there is no money exchanged.
  • Upon completion of the paper, the licensee will receive a release candidate to determine whether the final result still meets their needs.
  • If the content does not meet their needs, the licensee is not required to pay, and the research will be released without licensing or with alternate licensees.
  • Licensees may host and reuse the content for the length of the license (typically one year). This includes placing the content behind a registration process, posting on white paper networks, or translation into other languages. The research will always be hosted at Securosis for free without registration.

Here is the language we currently place in our research project agreements:

Content will be created independently of LICENSEE with no obligations for payment. Once content is complete, LICENSEE will have a 3 day review period to determine if the content meets corporate objectives. If the content is unsuitable, LICENSEE will not be obligated for any payment and Securosis is free to distribute the whitepaper without branding or with alternate licensees, and will not complete any associated webcasts for the declining LICENSEE. Content licensing, webcasts and payment are contingent on the content being acceptable to LICENSEE. This maintains objectivity while limiting the risk to LICENSEE. Securosis maintains all rights to the content and to include Securosis branding in addition to any licensee branding.

Even this process itself is open to criticism. If you have questions or comments, you can email us or comment on the blog.