Securosis

Research

ESF: Building the Endpoint Security Program

Over the previous 8 posts in this Endpoint Security Fundamentals series, we’ve looked at the problem from the standpoint of what to do right awat (Prioritize and Triage) and the Controls (update software and patch, secure configuration, anti-malware, firewall, HIPS and device control, and full disk encryption). But every experienced security professional knows a set of widgets doesn’t make a repeatable process, and it’s really the process and the people that makes the endpoints secure. So let’s examine how we take these disparate controls and make them into a program. Managing Expectations The central piece of any security program is making sure you understand what you are committing to and over-communicating your progress. This requires a ton of meetings before, during, and after the process to keep everyone on board. More importantly, the security team needs a standard process for communicating status, surfacing issues, and ensuring there are no surprises in task completion or results. The old adage about telling them what you are going to do, doing it, and then telling them what you did, is absolutely the right way to handle communications. Forget the ending at your own peril. Defining success The next key aspect of the program is specifying a definition for success. Start with the key drivers for protecting the endpoints anyway. Is it to stop the proliferation of malware? To train users? To protect sensitive data on mobile devices? To improve operational efficiency? If you are going to spend time and money, or to allocate resources you need at least one clear driver / justification. Then use those drivers to define metrics, and operationalize your process based on them. Yes, things like AV update efficiency and percentage of mobile devices encrypted are uninteresting, but you can trend off those metrics. You also can set expectations at the front end of the process about acceptable tolerances for each one. Think about the relevant incident metrics. How many incidents resulted from malware? User error? Endpoint devices? These numbers have impact – whether good or bad. And ultimately it’s what the senior folks worry about. Operational efficiency is one thing – incidents are another. These metrics become your dashboard when you are communicating to the muckety-mucks. And remember to use pie charts. We hear CFO-types like pie charts. Yes, I’m kidding. User training Training is the third rail of security, and needs discussion. We are fans of training. But not crappy, check-the-box-to-make-the-auditor-happy training. Think more like phishing internal users and, using other social engineering tactics to show employees how exposed they are. Good training is about user engagement. Unfortunately most security awareness training sucks. Keep the goals in mind. The end user is the first line of defense (and for mobile professionals, unfortunately also the last) so we want to make sure they understand what an attack looks like and what to do if they think they might have a problem. They don’t have to develop kung fu, they just need to understand when they’ve gotten kicked in the head. For more information and ideas, check out Rich’s FireStarter from Monday. Operational efficiencies Certainly one of the key ways to justify the investment in any kind of program is via operational efficiencies, and in the security business that means automation whenever and wherever possible. So just think about the controls we discussed through this series, and how to automate them. Here’s a brief list: Update and Patch, Secure Configurations – Tools to automate configuration management kill these two birds with one stone. You set a policy, and can thus both enforce standard configurations and keep key software updated. Anti-malware, FW/HIPS – As part of the endpoint suites, enforcing policies on updates, software distribution and policy settings are fairly trivial. Here is the leverage (and the main justification) for consolidating vendors on the endpoint – just beware folks who promise integration, but fail to deliver useful synergy. Device control, full disk encryption, application white listing – These technologies are not as integrated into the endpoint suites at this point, but as the technologies mature, markets consolidate, and vendors actually get out of their own way and integrate the stuff they buy, this will get better. Ultimately, operational efficiencies are all about integrating management of the various technologies used to protect the endpoint. Feedback loops The other key aspect of the program is making sure it adapts to the dynamic nature of the attack space. Here are a few things you should be doing to keep the endpoint program current: Test controls – We are big fans of hacking yourself, which means using hacking tools to test your own defenses. Check out tools like Metasploit and the commercial offerings, and send phishing emails to your employees trying to get them to visit fake sites – which presumably would pwn them. This is a critical aspect of the security program. Endpoint assessment – Figure out to what degree your endpoints are vulnerable, usually by scanning devices on connect with a NAC-type product, or with a scanner. Look for patterns to identify faulty configuration, ineffective patching, or other gaps in the endpoint defenses. Configuration updates – A couple times a year new guidance emerges (from CIS and NIST, etc.) recommending changes to standard builds. Evaluating those changes, and figuring out whether and how the builds should change, helps to ensure the endpoint protection is always adapted to current attacks. User feedback – Finally, you need to pay attention to the squeaky wheels in your organization. Well, not entirely, but you do have to factor in whether they are complaining about draconian usage policies – and more importantly whether some the controls are impeding their ability to do their jobs. That’s what we are trying to avoid. The feedback loops will indicate when it’s time to revisit the controls, perhaps changing standard builds or considering new controls or tools. Keep in mind that without process and failsafes to keep the process relevant, all the technology in the world can’t help. We’ll wrap up

Share:
Read Post

ESF: Controls: Full Disk Encryption

It happens quickly. An end user just needed to pick up something at the corner store or a big box retailer. He was in the store for perhaps 15 minutes, but that was plenty of time for a smash and grab. And then your phone rings, a laptop is gone, and it had information on about 15,000 customers. You sigh, hang up the phone and call the general counsel – it’s disclosure time. Sound familiar? Maybe this has been you. It likely will be, unless you proactively take action to make sure that the customer data on those mobile devices cannot be accessed by whoever buys the laptop on the gray market. That’s right, you need to deploy full disk encryption (FDE) on the devices. Unless you enjoy disclosure and meeting with lawyers, that is. Features Ultimately, encryption isn’t very novel. But managing encryption across an enterprise is, so key management and ease of use end up being the key features that generally drive FDE. As we’ve harped throughout this series, integration of that management with the rest of the endpoint functions is critical to gaining leverage and managing all the controls implemented on the endpoints. Of course, that’s looking at the issue selfishly from the security professional’s perspective. Ultimately the success of the deployment depends on how transparent it is to users. That means it needs to fit in with the authentication techniques they already use to access their laptops. And it needs to just work. Locking a user out of their data, especially an important user at an inopportune, time will make you a pretty unpopular person. Finally, don’t forget about those backups or software updates. If your encryption breaks your backups (and you are backing up all those laptops, right?) it’s a quick way to find yourself in the unemployment line. Same goes for having to tell the CIO everyone needs to bring their laptops back to the office every Patch Tuesday to get those updates installed. Integration with Endpoint Suites Given the natural order of innovation and consolidation, the industry has seen much consolidation of FDE solutions by endpoint vendors. Check Point started the ball rolling by acquiring Pointsec; shortly afterwards Sophos acquired Utimaco and McAfee acquired SafeBoot, which of course gives these vendors the ability to bundle FDE with their endpoint suites. Now bundling on the purchase order is one thing, but what we are really looking for is bundling from a management standpoint. Can the encryption keys be managed by the endpoint security management console? Is your directory supported natively? Can the FDE policies be set up from the same interface you use for host firewalls and HIPS policies? Unless this level of integration is available, there is little leverage in using FDE from your endpoint vendor. Free (as in beer?) Like all good innovations, the stand-alone companies get acquired and then the capability tends to get integrated into the operating system – which is clearly the case with FDE. Both Microsoft BitLocker and Apple FileVault provide the capability to encrypt at the operating system level (Bitlocker is full drive, FileVault is OS). Yes, it’s free, but not really. As mentioned above, encryption isn’t really novel anymore, it’s the management of encryption that makes the difference. Neither Microsoft nor Apple currently provides adequate tools to really manage FDE across an enterprise. Which means there will remain a need for third party managed FDE for the foreseeable future, and that also means the endpoint security suite is the best place to manage it. We expect further integration of FDE into endpoint security suites, further consolidation of the independent vendors, and ultimately commoditization of the capability. So we’ll joke over beers in a few years about how you use to pay separately for full disk encryption. Now that we’ve examined the controls we use to protect the endpoints, we need to build a systematic program to ensure these controls are deployed, enforced, and reported on. That’s our topic for the next two posts, as we build the endpoint security program also consider what kind of reporting we need to keep the auditors happy. Other posts in the Endpoint Security Fundamentals Series Introduction Prioritize: Finding the Leaky Buckets Triage: Fixing the Leaky Buckets Controls: Update and Patch Controls: Secure Configurations Controls: Anti-Malware Controls: Firewall, HIPS, and Device Control Share:

Share:
Read Post

FireStarter: No User Left Behind

Not to bring politics into a security blog, but I think it’s time we sit down and discuss the state of education in this country… I mean industry. Lance over at HoneyTech went off on the economics/metrics paper from Microsoft we recently discussed. Basically, the debate is over the value of security awareness training. The paper suggests that some training isn’t worth the cost. Lance argues that although we can’t always directly derive the desired benefits, there are legitimate halo effects. Lance also points out that the metrics chosen for the paper might not be the best. I’d like to flip this a little bit. The problem isn’t the potential value of awareness training – it’s that most training is total crap. When we improperly design the economics, incentives and/or metrics of the system, we fail to achieve desired objectives. Right, it’s not brain surgery. Let’s use the No Child Left Behind act here in the US as an example. This law requires standardized testing in schools, and funding is directly tied to test results. Which means teachers now teach to do well on an exam, rather than to educate. Students show up at universities woefully unprepared due to lack of general knowledge and possession of a few rote skills. It is the natural outcome of the system design. Most security awareness training falls into the same trap. The metrics tend to be test scores and completion rates. So organizations dutifully make sure employees sit through the training (if that’s what you want to call it) and get their check mark every year. But that forgets why we spend time and money to perform the training in the first place. What we really care about is improving security outcomes, which I’ll define as a reduction in frequency and severity of security incidents. Not about making sure every employee can check a box. Thus we need outcome-based security awareness programs, which means we have to design our metrics and economics to support measurable improvements in security. Rather than measuring how many people took a class or passed a stupid test, we should track outcomes such as: For a virus infection, was user interaction involved? User response rates to phishing spam. Results from authorized social engineering penetration tests. Tracking incidents where the user was involved can determine whether the incident was reasonably preventable, and whether the user was (successfully) trained to avoid that specific type of incident. Follow the trends over time, and feed this back into your awareness program. If all you do is force people to sit through boring classes or follow mind-numbing web-based training, and then say your training was successful if they can answer a few multiple choice questions, you are doing it wrong. So we have not given up hope on the impact of security awareness training. If we focus on tracking real world outcomes, not auditor checklist garbage like how many people signed a policy or sat in a chair for a certain number of hours, it can make a difference. Are taking too many hits off the peace pipe? Have any of you had a measurable impact of training in your environment? Speak up in the comments. Share:

Share:
Read Post

ESF: Controls: Firewalls, HIPS, and Device Control

Popular perception of endpoint security revolves around anti-malware. But they are called suites for a reason – other security components ship in these packages, which provide additional layers of protection for the endpoint. Here we’ll talk about firewalls, host intrusion prevention, and USB device control. Firewalls We know what firewalls do on the perimeter of the network: selectively block traffic that goes through gateways by port and protocol. The functionality of a host firewall on an endpoint is similar. They allow an organization to enforce a policy governing what traffic the device can accept (ingress filtering) and transmit (egress filtering). Managing the traffic to and from each endpoint serves a number of purposes, including hiding the device from reconnaissance efforts, notifying the user or administrators when applications attempt to access the Internet, and monitoring exactly what the endpoints are doing. Many of these capabilities are available separately on the corporate network, but when traveling or at home and not behind the corporate perimeter, the host firewall is the first defense against attacks. Of course, a host firewall (like everything else that runs on an endpoint) takes up resources, which can be a problem on older or undersized machines. It also bears consideration that alerts multiply, especially when you have a couple thousand endpoints forwarding them to a central console, so some kind of automated alert monitoring becomes critical. Although pretty much every vendor bundles a host firewall with their endpoint suite nowadays, the major operating systems also provide firewall options. Windows has included a firewall since XP, but keep in mind that the XP firewall does not provide egress (outbound) filtering – remedied in Windows Vista. Mac OS X 10.5 Leopard added a ‘socket’ firewall to manage application listeners (ingress), and deprecated the classic ipfw network firewall, which is still available. As with all endpoint capabilities, just having the feature isn’t enough, since the number of endpoints to be managed puts a real focus on managing the policies. This makes policy management more important than firewall engine details. Host Intrusion Prevention Systems (HIPS) We know what network intrusion detection/prevention products do, in terms of inspecting network traffic and looking for attacks. Similarly, host intrusion detection/prevention capabilities look for attacks by monitoring what’s happening on the endpoint. This can include application behavior, activity logs, endpoint network traffic, system file changes, Windows registry changes, processes and/or threads, memory allocation, and pretty much anything else. The art of making host intrusion prevention work is to set up the policies to prevent malware infection, without badly impacting the user experience or destroying the signal-to-noise ratio of alerts coming into the management console. Yes, this involves tuning, so you start with the product’s default settings (hopefully on a test group) and see what works and what doesn’t. You should be able to quickly optimize the policy. Given the number of applications and activities at each endpoint, you can go nuts trying to manage these policies, which highlights the importance of the standard builds (as described in Controls: Secure Configurations). Starting with 3-4 different policies, and then you can manage others by exception. Keep in mind that tuning the product for servers is totally different, as the policies will need to be tailored for very different applications running on servers. Currently, all the major endpoint suites include simple HIPS capabilities. Some vendors also offer a more capable HIPS product – typically targeting server devices, which are higher profile targets and subject to different attacks. USB Device Control Another key attack vector for both data compromise and malware proliferation is the USB ports on endpoint devices. In the old days, you’d typically know when someone brought in a huge external drive to pilfer data. Nowadays many of us carry a 16GB+ drive at all times (yes, your smartphone is a big drive), so we’ve got to control USB ports to address this exposure. Moreover, we’ve all heard stories of social engineers dropping USB sticks in the parking lot and waiting for unsuspecting employees to pick them up and plug them in. Instant pwnage 4U! So another important aspect of protecting endpoints includes defining which devices can connect to a USB port and what those devices can do. This has been a niche space, but as more disclosure is required for data loss, organizations are getting more serious about managing their USB ports. As with all other endpoint technologies, device control adds significant management overhead for keeping track of all the mobile devices and USB sticks, etc. The products in the space include management consoles to ease the burden, but managing thousands of anything is non-trivial. Right now device control is a discrete function, but we believe these niche products will also be subsumed into the endpoint suites over the next two years. In the meantime, you may be able to gain some leverage by picking a device control vendor partnered with your endpoint suite provider. Then you should at least be able centralize the alerts, even if you don’t get deeper management integration. Management Leverage Though we probably sound like a broken record at this point, keep in mind that each additional security application/capability (control) implemented on the endpoint devices increases the management burden. So when evaluating technology for implementation, be sure to assess the additional management required and the level of integration with your existing endpoint management workflow. We’ll wrap up our discussion of Endpoint Controls in the next post, as we discuss full disk encryption, which disclosure laws have shifted from nice-to-have to something you need deployed – immediately. Other posts in the Endpoint Security Fundamentals Series Introduction Prioritize: Finding the Leaky Buckets Triage: Fixing the Leaky Buckets Controls: Update and Patch Controls: Secure Configurations Controls: Anti-Malware Share:

Share:
Read Post

ESF: Controls: Anti-Malware

As we’ve discussed throughout the Endpoint Security Fundamentals series, adequately protecting endpoint devices entails more than just an endpoint security suite. That said, we still have to defend against malware, which means we’ve got to figure out what is important in an endpoint suite and how to get the most value from the investment. The Rise of Socially-Engineered Malware To state the obvious, over the past few years malware has dramatically changed. Not just the techniques used, but also the volume. It’s typical for an anti-virus companies to identify 1-2 million new malware samples per month. Yes, that’s a huge amount. But it gets worse: a large portion of malware today gets obfuscated within legitimate looking software packages. A good example of this is fake anti-virus software. If one of your users happens to click on a link and end up on a compromised site (by any means), a nice little window pops up telling them they are infected and need to download an anti-virus program to clean up the attack. Part of that is true – upon visiting the site a drive-by attack did compromise the machine. But in this case, the antidote is a lot worse than the system because this new “anti-virus” package leaves behind a nasty trojan (typically ZeuS or Conficker). The folks at NSS Labs have dubbed this attack “socially-engineered malware,” because it hides the malware and preys upon the user’s penchant to install the compromised payload with disastrous results. That definition is as good as any, so we’ll go with it. Cloud and reputation The good news is that the anti-malware companies are not sitting still. They continue to make investments in new detection techniques to try to keep pace. Some do better than others (check out NSS Labs’ comparative tests for the most objective and relevant testing – in our opinion anyway), but what is really clear is how broken the old blacklist, signature-based model has gotten. With 2 million malware samples per month, there is no way keeping a list of bad stuff on each device remains feasible. The three main techniques added over the past few years are: Cloud-based Signatures – Since it’s not possible to keep a billion signatures in an endpoint agent, the vendors try to divide and conquer the issue. So they split the signature database between the agent and an online (cloud) repository. If an endpoint encounters a file not in its local store, it sends a signature to the cloud for checking against the full list. This has given the blacklist model some temporary legs, but it’s not a panacea, and the AV vendors know it. Reputation – A technique pioneered by the anti-spam companies a few years ago involves inferring the intent of a site by tracking what that site does and assigning it a reputation score. If the site has a bad reputation, the endpoint agent doesn’t let the site’s files or executables run. Obviously this is highly dependent on the scale and accuracy of the reputation database. Reputation has become important for most security offerings, including perimeter and web filtering, in addition to anti-spam and endpoint security. Integrated HIPS – Another technique in use today is host intrusion prevention. But not necessarily signature-based HIPS, which was the first generation. Today most HIPS looks more like file integrity monitoring, so the agent has a list of sensitive system files which should not be changed. When a malware agent runs and tries to change one of these files, the agent blocks the request – detecting the attack. So today’s anti-malware agents attempt to detect malware both before execution (via reputation) and during execution (signatures and HIPS), so they can block attacks. But to be clear, the industry is always trying to catch up with the malware authors. Making things even more difficult, users have an unfortunate tendency to disregard security warnings, allow the called-out risky behavior, and then get pwned. This can be alleviated slightly with high-confidence detection (if we know it’s a virus, we don’t have to offer the user a chance to run it) or stronger administrative policies which authorize not even letting users override the anti-malware software. But it’s still a fundamentally intractable problem. Management is key Selecting an anti-malware agent typically comes down to two factors: price and management. Price is obvious – plenty of upstarts want to take market share from Symantec and McAfee. They use price and an aggressive distribution channel to try and displace the incumbents. All the vendors also have migration tools, which dramatically lower switching costs. In terms of management, it usually comes down to personal preference, because all the tools have reasonably mature consoles. Some use open data stores, so customers can build their own reporting and visualization tools. For others, the built-in stuff is good enough. Architecturally, some consoles are more distributed than others, and so scale better to large enterprise operations. But anti-malware remains a commodity market. One aspect to consider is the size and frequency of signature and agent updates, especially for larger environments. If the anti-malware vendor sends 30mb updates 5 times a day, that will create problems in low-bandwidth environments such as South America or Africa. Free AV: You get what you pay for… Another aspect of anti-malware to consider is free AV, pioneered by folks like AVG and Avast, who claim up to 100 million users of their free products. To be clear, in a consumer context free AV can work fine. But it’s not a suite, so you won’t get a personal firewall or HIPS. There won’t be a cloud-based offering behind the tool, and it won’t use new techniques like reputation to defend against malware. Finally, there are no management tools, so you’ll have to manage every device individually, which loses feasibility past a handful. For a number of use cases (like your mom’s machine), free AV should be fine. And to be clear, the entire intent of these vendors in giving away the anti-malware engine is

Share:
Read Post

ESF: Controls: Secure Configurations

Now that we’ve established a process to make sure our software is sparkly new and updated, let’s focus on the configurations of the endpoint devices that connect to our networks. Silly configurations present another path of least resistance for the hackers to compromise your devices. For instance, there is no reason to run FTP on an endpoint device, and your standard configuration should factor that in. Define Standard Builds Initially you need to define a standard build, or more likely a few standard builds. Typically for desktops (no sensitive data, and sensitive data), mobile employees, and maybe, kiosks. There probably isn’t a lot of value to going broader than those 4 profiles, but that will depend on your environment. A good place to start is one of the accepted benchmarks of configurations available in the public domain. Check out the Center for Internet Security, which produces configuration benchmarks for pretty much every operating system and many of the major applications. In order to see your tax dollars at work (if you live in the US anyway), also consult NIST, especially if you are in the government. Its SCAP configuration guides provide a similar type of enumeration of specific setting to lock down your machines. To be clear, we need to balance security with usability and some of the configurations suggested in the benchmarks clearly impact usability. So it’s about figuring out what will work in your environment, documenting those configurations, getting organizational buy-in, and then implementing. It also makes sense to put together a list of authorized software as part of the standard builds. You can have this authorized software installed as part of the endpoint build process, but it also provides an opportunity to revisit policies on applications like iTunes, QuickTime, Skype, and others which may not yield a lot of business value and have a history of vulnerability. We’re not saying these applications should not be allowed – you’ve got to figure that out in the context of your organization – but you should take the opportunity to ask the questions. Anti-Exploitation As you define your standard builds, at least on Windows, you should turn on anti-exploitation technologies. These technologies make it much harder to gain control of an endpoint through a known vulnerability. I’m referring to DEP (data execution prevention) and ASLR (address space layout randomization), though Apple is also implementing similar capabilities in their software. To be clear, anti-exploitation technology is not a panacea for protection – as the winners of Pwn2Own at CanSecWest show us every year. Especially for those applications that don’t support it (d’oh!), but the technologies do help make it harder to exploit the vulnerabilities in compatible software. Other Considerations Running as a standard user – We’ve written a bit on the possibilities of devices running in standard user mode (as opposed to administrator mode), and you should consider this option when designing secure configurations, especially to help enforce authorized software policies. VPN to Corporate – Given the reality that mobile users will do something silly and put your corporate data at risk, one technique to protect them is to run all their Internet traffic through the VPN to your site. Yes, it may add a bit of latency, but at least the traffic will be running through the web gateway and you can both enforce policy and audit what the user is doing. As part of your standard build, you can enforce this network setting. Implementing Secure Configurations Once you have the set of secure configurations for your device profiles, how do you start implementing them? First make sure everyone buys into the decisions and understands the ramifications of going down this path. Especially if you plan to stop users from installing certain software or block other device usage patterns. Constantly asking for permission can be dangerously annoying but choosing the right threshold for confirmations is a critical aspect of a designing a policy. If the end users feel they need to go around the security team and their policies to get the job done, everyone loses. Once the configurations are locked and loaded, you need to figure out how much work is required for implementation. Next you assess the existing endpoints against the configurations. Lots of technologies can do this, ranging from Windows management tools, to vulnerability scanners, to third party configuration management offerings. The scale and complexity of your environment should drive the selection of the tool. Then plan to bring those non-compliant devices into the fold. Yes, you could just flip the switch and make the changes, but since many of the configuration settings will impact user experience, it makes sense to do a bit of proactive communication to the user community. Of course some folks will be unhappy, but that’s life. More importantly, this should help cut down help desk mayhem when some things (like running that web business from corporate equipment) stop working. Discussion of actually making the changes brings us to automation. For organizations with more than a couple dozen machines, a pretty significant ROI is available from investing in some type of configuration management. Again, it doesn’t have to be the Escalade of products, and you can even look at things like Group Policy Objects in Windows. The point is making manual changes on devices is idiotic, so apply the level of automation that makes sense in your environment. Finally, we also want to institutionalize the endpoint configurations, and that means we need to get devices built using the secure configuration. Since you probably have an operations team that builds the machines, they need to get the image and actually use it. But since you’ve gotten buy-in at all steps of this process, that shouldn’t be a big deal, right? Next up, we’ll discuss the anti-malware space and what makes sense on our endpoints. Other posts in the Endpoint Security Fundamentals Series Introduction Prioritize: Finding the Leaky Buckets Triage: Fixing the Leaky Buckets Controls: Update and Patch Share:

Share:
Read Post

Database Security Fundamentals: Auditing Transactions

I am now switching gears to talk about some of the ‘detective’ measures that help with forensic analysis of transactions and activity. The preventative measures discussed previously are great for protecting your system from known attacks, but they don’t help detect fraudulent misuse or failure of business processes. For that we need to capture the events that make up the business processes and analyze them. Our basic tool is database auditing, and they provide plenty of useful information. Before I get too far into this discussion, it’s worth noting that the term ‘transactions’ is an arbitrary choice on my part. I use it to highlight both that audit data can group statements into logical sequences corresponding to particular business functions, and that audit trail analysis is most useful when looking for insider misuse – rather than external attacks. Audit trails are much more useful for detecting what was changed, rather than what was accessed, and for forensic examination of database ‘state’. There are easier and more efficient ways of cataloging SELECT statements and simple events like failed logins. Usually at this point I provide a business justification for auditing of transactions or specific events, and some use cases as examples of how it helps. I will skip that this time, as you already know that auditing is built into every database; and captures database queries, transactions, and important system changes. You probably already use audit logs to see what actions are most common so you can set up indices and tune your most common queries. You may even use auditing to detect suspect activity, to perform forensic audits, or even to address a specific compliance mandate. At the very least you need to have some form of database auditing enabled on production databases to answer the question “What the &!$^% happened” after a database crash. Regardless of your reasons, auditing is essential for security and compliance. In this post I will focus on capturing transactions and alterations to the database. What type of analysis you do, how long you keep the data, and what reports you create are secondary. I am focusing on gathering the audit trail rather than what do with it next. What’s critical is here understanding what data you need, and how best to capture it. All databases have some type of audit function. The ‘gotcha’ is that use of database auditing needs careful consideration to avoid storage, performance, and management nightmares. Depending on the vendor and how the feature is deployed, you can gather detailed transactional information, filter unwanted transactions to get a succinct view of database activity, and do so with only modest performance impact. Yes, I said modest performance impact. This remains a hot-button issue for most DBAs and is easy to mess up, so planning and basic tests form a bulk of this phase. Benchmark: Find a test system, gather a bunch of queries that reflect user activity on your system, and run some benchmarks. Turn on the auditing or tracing facility and rerun the benchmark. Wince and swear repeatedly at the performance degradation you just witnessed. Aren’t you glad you did this on a test system? You have a baseline for best and worst case performance. Tune: Select Audit options. Oracle, SQL Server, DB2, and Sybase have multiple options for generating audit trails. Don’t use Oracle’s fine-grained auditing when normal auditing will suffice. Don’t use event monitors on DB2 if you have many different types of events to collect. Which auditing option you choose will dramatically affect performance and data volumes. Examine the audit capture options, and select only the event types you need. If you only care about user events, don’t bother collecting all the object events. If you only care about failed logins and changes to system privileges, filter out meta-data and data changes. Examine buffer space, tablespace, block utilization, and other resource tuning options. Audit data are static in size, so their data blocks can be set to ‘write-only’, thus saving space. For audit trails that store data within database tables, you can pre-allocate table space and blocks to reduce latency from space allocation. Rerun the benchmarks and see what helps performance. Generally these steps provide significant performance gains. No more cursing the database vendor should be needed. Filter: Get rid of specific actions you don’t need. For example, batch updates may fall outside your area of interest, yet comprise a significant fraction of the audit log, and can therefore be parsed out. Or you may want to audit all transactions while the databse is running, but not need events from database startup. In some scenarios the database can filter these events, which improves performance. If the database does not provide this type of row-level filtering, you can add a WHERE clause to the extraction query or use a script to whittle down the extracted data. Implement: Take what you learned and apply it in the production environment. Verify that the audit trail is being collected. Ad-hoc Analysis: Review the logs periodically, focusing on failures of system functions and logins that indicate system probing. Any policy or report that you generate may miss unusual events, so I recommend occasional ad hoc analysis to detect anything hinkey. Record: Document the audit settings as well as the test results, as you will need them in the future to understand the impact of increased auditing levels. Communicate use of audit to users, and warn them that there will be a performance hit due to regulatory and security requirements. Create a log retention policy. This is necessary – even if the policy simply states that you will collect audit trails and delete them at the end of every week, write it down. Many compliance requirements let you define retention however you choose, so be proactive. You can always change it in the future. More advanced considerations: Automate: I recommend that you automate as much of the process as you can, once you have done the initial analysis and configuration. Collection of the audit

Share:
Read Post

Friday Summary: April 9, 2010

So I’m turning 39 in a couple of weeks. Not that 39 is one of those milestone birthdays, but it leaves me with only 365 days until I can not only no longer trust myself (as happened when I turned 30), but I supposedly can’t even trust my bladder anymore. I’m not really into birthdays with ‘0’ at the end having some great significance, but I do think they can be a good excuse to reflect on where you are in life. Personally I have an insanely good life – I run my own company, have a great family, enjoy my (very flexible) job, and have gotten to do some pretty cool things over the years. Things like “fly a jet,” “drive over 100 MPH with lights and sirens on,” “visit 6 of 7 continents,” “compete in a national martial arts tournament” (and lose to a 16 year old who hadn’t discovered beer yet), “rescue people from mountains,” “get choppered into a disaster,” “ski patrol at a major resort,” “meet Jimmy Buffett,” and even “write a screenplay” (not a good screenplay, but still). But there are a few things I haven’t finished yet, and that last year before 40 seems like a good chance to knock one or two off. Here are my current top 5, and I’m hoping to finish at least one: Get my pilot’s license. Visit Antarctica (the only continent I haven’t been on). Sail the Caribbean Captain Ron style. Run a marathon. Finish an Olympic-distance triathlon (I’ve done sprint distance already). I’m open to suggestions, and while the marathon/triathlon are the cheapest, I’d kind of like to get that pilot’s license. On to the Summary: Webcasts, Podcasts, Outside Writing, and Conferences Living with Windows: security. Rich wrote this up for Macworld. Effort Will Measure Costs Of Monitoring, Managing Network Security: Open-source Network Security Operations Quant goes live. Favorite Securosis Posts Rich: Anti-Malware Effectiveness: The Truth Is out There. Lies, damn lies, and testing. Adrian Lane: Database Virtualization and Abstraction. Mike Rothman: FireStarter: Nasty or Not, Jericho is Irrelevant. I know this is from last week, but the comments on the post this week were pretty intense (and good). David Mortman: Who to Recruit for Security, How to Get Started, and Career Tracks. Other Securosis Posts Database Security Fundamentals: Auditing Transactions. ESF: Controls: Secure Configurations. Incite 4/7/2010: Everybody Loves the Underdog. ESF: Controls: Update and Patch. ESF: Triage: Fixing the Leaky Buckets. ESF: Prioritize: Finding the Leaky Buckets. Favorite Outside Posts Rich: The Spider That Ate My Site Okay, I hate to admit this but I did something similar to our back end management interface. When admin buttons like “delete” are merely links, a simple spider can cause some serious damage. Adrian Lane: How did Wikileaks decrypt the video? Robert Graham’s for, indirectly, calling BS on this. David Mortman: Bring your Cloud to Work in Iraq. Mike Rothman: Preview or vaporware? Announcements of technology that doesn’t exist annoy the crap out of me. These are the PR guidelines for how to do it (and not annoy guys like me) from Schwartz. Chris Pepper: Researchers Trace Data Theft to Intruders in China. Project Quant Posts Project Quant: Database Security – Change Management. Project Quant: Database Security – Patch. Top News and Posts Anton: CISecurity Metrics Move Ahead. Are PDF’s Worm-able? IWM and Shadow Server Project Report: Shadows in the Clouds. Researcher Releases ‘Qubes’ Hardened OS. Researcher Details New Class Of Cross-Site Scripting Attack. Meta-Information Cross Site Scripting. Still looks like persistent XSS to me, but still an interesting variant. Removing the RSA Security 1024 V3 Root An orphaned root certificate. Now I don’t feel so bad about forgetting to renew domain registration. Patch Tuesday Info. Customers Sue Countrywide Financial Over Theft And Sale Of Personal Data: Class-action suit seeks $20 million as well as answers about company’s involvement. Very interesting, as it appears the claimants believe the data theft was organized and possibly condoned. Stolen IDs used to file fake tax returns. Blog Comment of the Week Remember, for every comment selected, Securosis makes a $25 donation to Hackers for Charity. This week’s best comment goes to Paul Simmonds, in response to FireStarter: Nasty or Not, Jericho is Irrelevant. Having just read the RFI response from a major software vendor, who’s marketing BS manages to side-step all the questions designed to get to the bottom of “is this secure”, then the answer is YES, we do need the nasty questions. More importantly they may be obvious but we as purchasers are not asking them, and the vendors are not volunteering the information (mainly because what they supply is inherently insecure). And then we wonder why we are in the state we are in?? Share:

Share:
Read Post

Incite 4/7/2010: Everybody Loves the Underdog

Come on, admit it. Unless you have Duke Blue Devil blood running through your veins (and a very expensive diploma on the wall) or had Duke in your tournament bracket with money on the line, you were pulling for the Butler Bulldogs to prevail in Monday night’s NCAA Men’s Basketball final. Of course you were – everyone loves the underdog. If you think of all the great stories through history, the underdog has always played a major role. Think David taking down Goliath. Moses leading the Israelites out of Egypt. Pretty sure the betting line had long odds on both those scenarios. Think of our movie heroes, like Rocky, Luke Skywalker, Harry Potter, and the list goes on and on. All weren’t supposed to win and we love the fact that they did. We love the underdogs. Unfortunately reality intruded on our little dream, and on Monday Butler came up a bucket short. But you still felt good about the game and their team, right? I can’t wait for next year’s season to see whether the little team that could can show it wasn’t all just a fluke (remember George Mason from 2006?). And we love our underdogs in technology, until they aren’t underdogs anymore. No one really felt bad when IBM got railed when mainframes gave way to PCs. Unless you worked at IBM, of course. Those damn blue shirts. And when PCs gave way to the Internet, lots of folks were happy that Microsoft lost their dominance of all things computing. How long is it before we start hating the Google. Or the Apple? It’ll happen because there will be another upstart taking the high road and showing how our once precious Davids have become evil, profit-driven Goliaths. Yup, it’ll happen. It always does. Just think about it – Apple’s market cap is bigger than Wal-Mart. Not sure how you define underdog, but that ain’t it. Of course, unlike Rocky and Luke Skywalker, the underdog doesn’t prevail in two hours over a Coke and popcorn. It happens over years, sometimes decades. But before you go out and get that Apple logo tattooed on your forearm to show your fanboi cred, you may want to study history a little. Or you may become as much a laughingstock as the guy who tattooed the Zune logo on his arm. I’m sure that seemed like a good idea at the time, asshat. The mighty always fall, and there is another underdog ready to take its place. If we learn anything through history, we should now the big dogs will always let us down at some point. So don’t get attached to a brand, a company, or a gadget. You’ll end up as disappointed as the guy who thought The Phantom Menace would be the New Hope of our kids’ generation. – Mike. Photo credits: “Underdog Design” originally uploaded by ChrisM70 and “Zune Tattoo Guy” originally uploaded by Photo Giddy Incite 4 U What about Ritalin? – Shrdlu has some tips for those of us with an, uh, problem focusing. Yes, the nature of the security managers’ job is particularly acute, but in reality interruption is the way of the world. Just look at CNN or ESPN. There is so much going on I find myself rewinding to catch the headlines flashing across the bottom. Rock on, DVR – I can’t miss that headline about… well whatever it was about. In order to restore any level of productivity, you need to take Shrdlu’s advice and delegate, while removing interruptions – like email notifications, IM and Twitter. Sorry Tweeps, but it’s too hard to focus when you are tempted by links to blending an iPad. It may be counter-intuitive, but you do have to slow down to speed up at times. – MR Database security is a headless rhicken – As someone who has been involved with database security for a while, it comes as no surprise that this study by the Enterprise Strategy Group shows a lack of coordination is a major issue. Anyone with even cursory experience knows that security folks tend to leave the DBAs alone, and DBAs generally prefer to work without outside influence. In reality, there are usually 4+ stakeholders – the DBA, the application owner/manager/developer, the sysadmin, security, and maybe network administration (or even backup, storage, and…). Everyone views the database differently, each has different roles, and half the time you also have outside contractors/vendors managing parts of it. No wonder DB security is a mess… pretty darn hard when no one is really in charge (but we sure know who gets fired first if things turn south). – RM Beware of surveys bearing gifts – The PR game has changed dramatically over the past decade. Now (in the security business anyway) it’s about sound bites, statistics, and exploit research. Without either of those three, the 24/7 media circus isn’t going to be interested. Kudos to Bejtlich, who called out BeyondTrust for trumping up a “survey” about the impact of running as a standard user. Now to be clear, I’m a fan of this approach, and Richard acknowledges the benefits of running as a standard user as well. I’m not a fan of doing a half-assed survey, but I guess I shouldn’t be surprised. It’s hard to get folks interested in a technology unless it’s mandated by compliance. – MR e-Banking and the Basics – When I read Brian Krebs’ article on ‘e-Banking Guidance for Banks & Businesses’, I was happy to see someone offering pragmatic advice on how to detect and mitigate the surge of on-line bank fraud. What shocked me is that the majority of his advice was basic security and anti-fraud steps, and it was geared towards banks! They are not already doing all this stuff? Oh, crap! Does that mean most of these regional banks are about as sophisticated as an average IT shop about security – “not very”? WTF? You don’t monitor for abnormal activity already? You don’t have overlapping controls in

Share:
Read Post

Anti-Malware Effectiveness: The Truth Is out There

One of the hardest things to do in security is to discover what really works. It’s especially hard on the endpoint, given the explosion of malware and the growth of social-engineering driven attack vectors. Organizations like ICSA Labs, av-test.org, and VirusBulletin have been testing anti-malware suites for years, though I don’t think most folks put much stock in those results. Why? Most of the tests yield similar findings, which means all the products are equally good. Or more likely, equally bad. I know I declared the product review dead, but every so often you still see comparative reviews – such as Rob Vamosi’s recent work on endpoint security suites in PCWorld. The rankings of the 13 tested are as follows (in order): Top Picks: Norton Internet Security 2010, Kaspersky Internet Security 2010, AVG Internet Security 9.0 Middle Tier: Avast, BitDefender, McAfee, Panda, PC Tools, Trend Micro, and Webroot Laggards: ESET, F-Secure, and ZoneAlarm The PCWorld test was largely driven by a recent av-test.org study into malware detection. But can one lab produce enough information (especially in a single round of testing) to really understand which product works best? I don’t think so, because my research in this area has shown that 3 testing organizations can produce 10 different results. A case in point is the NSS Labs test from August of last year. Their rankings are as follows, ranked by malware detection rates: Trend Micro, Kaspersky, Norton, McAfee, Norman, F-Secure, AVG, Panda, and ESET. Some similarities, but also a lot of differences. More recently, NSS did an analysis of how well the consumer suites detected the Aurora attacks (PDF), which got so much air play in January. Their results were less than stellar: only McAfee entirely stopped the original attack and a predictable variant two weeks out. ESET and Kaspersky performed admirably as well, but it’s bothersome that most of the products we use to protect our endpoints have awful track records like this. If you look at the av-test ratings and then compare them to the NSS tests, the data shows some inconsistencies – especially with vendors like Trend Micro who are ranked much higher by NSS but close to the bottom by av-test; and AVG which is ranked well by av-test but not by NSS. So what’s the deal here? Your guess is as good as mine. I know the NSS guys and they focus their tests pretty heavily on what they call “social engineering malware,” which are legit downloads with malicious code hidden in the packages. This kind of malware is much harder to detect than your standard malware sample that’s been on the WildList for a month. Reputation and advanced file integrity monitoring capabilities are critical to blocking socially engineered malware, and most folks believe these attacks will continue to proliferate over time. Unfortunately, there isn’t enough detail about the av-test.org tests to really know what they are digging into. But my spidey sense tingles on the objectivity of their findings when you read this report from December by av-test.org and commissioned by Trend. It concerns me that av-test.org had Trend close to the bottom in a number of recent tests, but changed their testing methodology a bit with this test, and shockingly: Trend came out on top. WTF? There is no attempt to reconcile the findings across different sets of av-test.org tests, but I’d guess it has something to do with green stuff changing hands. Moving forward, it would also be great to see some of the application whitelisting products tested alongside the anti-malware suites – for detection, blocking, and usability. That would be interesting. If I’m an end user trying to decide between these products, I’m justifiably confused. Personally, I favor the NSS tests – if only because they provide a lot more transparency on they did their tests. The inconsistent information being published by av-test.org is a huge red flag for me. But ultimately you probably can’t trust any of these tests, so you have a choice to make. Do you care about the test scores or not? If not, then you buy based on what you would have bought on anyway: management and price. It probably makes sense to disqualify the bottom performers in each of the tests, since for whatever reason the testers figured out how to beat them, which isn’t a good sign. In the end you will probably kick the tires yourself, pick a short list (2 or 3 packages) and run them side by side though a gauntlet of malware you’ve found in your organization. Or contract with testing labs to do a test on your specific criteria. But that costs money and takes time, neither of which we have a lot of. The Bottom Line The truth may be out there, but Fox Mulder has a better chance of finding it than you. So we focus on the fundamentals of protecting not just the endpoints, but also the networks, servers, applications, and data. Regardless of the effectiveness of the anti-malware suites, your other defenses should help you both block and detect potential breaches. Share:

Share:
Read Post
dinosaur-sidebar

Totally Transparent Research is the embodiment of how we work at Securosis. It’s our core operating philosophy, our research policy, and a specific process. We initially developed it to help maintain objectivity while producing licensed research, but its benefits extend to all aspects of our business.

Going beyond Open Source Research, and a far cry from the traditional syndicated research model, we think it’s the best way to produce independent, objective, quality research.

Here’s how it works:

  • Content is developed ‘live’ on the blog. Primary research is generally released in pieces, as a series of posts, so we can digest and integrate feedback, making the end results much stronger than traditional “ivory tower” research.
  • Comments are enabled for posts. All comments are kept except for spam, personal insults of a clearly inflammatory nature, and completely off-topic content that distracts from the discussion. We welcome comments critical of the work, even if somewhat insulting to the authors. Really.
  • Anyone can comment, and no registration is required. Vendors or consultants with a relevant product or offering must properly identify themselves. While their comments won’t be deleted, the writer/moderator will “call out”, identify, and possibly ridicule vendors who fail to do so.
  • Vendors considering licensing the content are welcome to provide feedback, but it must be posted in the comments - just like everyone else. There is no back channel influence on the research findings or posts.
    Analysts must reply to comments and defend the research position, or agree to modify the content.
  • At the end of the post series, the analyst compiles the posts into a paper, presentation, or other delivery vehicle. Public comments/input factors into the research, where appropriate.
  • If the research is distributed as a paper, significant commenters/contributors are acknowledged in the opening of the report. If they did not post their real names, handles used for comments are listed. Commenters do not retain any rights to the report, but their contributions will be recognized.
  • All primary research will be released under a Creative Commons license. The current license is Non-Commercial, Attribution. The analyst, at their discretion, may add a Derivative Works or Share Alike condition.
  • Securosis primary research does not discuss specific vendors or specific products/offerings, unless used to provide context, contrast or to make a point (which is very very rare).
    Although quotes from published primary research (and published primary research only) may be used in press releases, said quotes may never mention a specific vendor, even if the vendor is mentioned in the source report. Securosis must approve any quote to appear in any vendor marketing collateral.
  • Final primary research will be posted on the blog with open comments.
  • Research will be updated periodically to reflect market realities, based on the discretion of the primary analyst. Updated research will be dated and given a version number.
    For research that cannot be developed using this model, such as complex principles or models that are unsuited for a series of blog posts, the content will be chunked up and posted at or before release of the paper to solicit public feedback, and provide an open venue for comments and criticisms.
  • In rare cases Securosis may write papers outside of the primary research agenda, but only if the end result can be non-biased and valuable to the user community to supplement industry-wide efforts or advances. A “Radically Transparent Research” process will be followed in developing these papers, where absolutely all materials are public at all stages of development, including communications (email, call notes).
    Only the free primary research released on our site can be licensed. We will not accept licensing fees on research we charge users to access.
  • All licensed research will be clearly labeled with the licensees. No licensed research will be released without indicating the sources of licensing fees. Again, there will be no back channel influence. We’re open and transparent about our revenue sources.

In essence, we develop all of our research out in the open, and not only seek public comments, but keep those comments indefinitely as a record of the research creation process. If you believe we are biased or not doing our homework, you can call us out on it and it will be there in the record. Our philosophy involves cracking open the research process, and using our readers to eliminate bias and enhance the quality of the work.

On the back end, here’s how we handle this approach with licensees:

  • Licensees may propose paper topics. The topic may be accepted if it is consistent with the Securosis research agenda and goals, but only if it can be covered without bias and will be valuable to the end user community.
  • Analysts produce research according to their own research agendas, and may offer licensing under the same objectivity requirements.
  • The potential licensee will be provided an outline of our research positions and the potential research product so they can determine if it is likely to meet their objectives.
  • Once the licensee agrees, development of the primary research content begins, following the Totally Transparent Research process as outlined above. At this point, there is no money exchanged.
  • Upon completion of the paper, the licensee will receive a release candidate to determine whether the final result still meets their needs.
  • If the content does not meet their needs, the licensee is not required to pay, and the research will be released without licensing or with alternate licensees.
  • Licensees may host and reuse the content for the length of the license (typically one year). This includes placing the content behind a registration process, posting on white paper networks, or translation into other languages. The research will always be hosted at Securosis for free without registration.

Here is the language we currently place in our research project agreements:

Content will be created independently of LICENSEE with no obligations for payment. Once content is complete, LICENSEE will have a 3 day review period to determine if the content meets corporate objectives. If the content is unsuitable, LICENSEE will not be obligated for any payment and Securosis is free to distribute the whitepaper without branding or with alternate licensees, and will not complete any associated webcasts for the declining LICENSEE. Content licensing, webcasts and payment are contingent on the content being acceptable to LICENSEE. This maintains objectivity while limiting the risk to LICENSEE. Securosis maintains all rights to the content and to include Securosis branding in addition to any licensee branding.

Even this process itself is open to criticism. If you have questions or comments, you can email us or comment on the blog.