Securosis

Research

FireStarter: You Don’t Need Central Key Management

If you are using encryption, somewhere you have encryption keys. Where you store them, and how they are managed and shared, are legitimate concerns. It is fashionable to store all keys in a single centralized key management server. Much as the name implies, this means storing all of your keys, of different types, for multiple use cases into a single key management server. Rich likes to call these ‘uber’ key manager, that handle any and all key functions; and are distinct from external key management servers that unify instances of single application, or provide key services across the disks in your storage array. Conceptually, a single product that handles all my key needs from a unified interface sounds great. But the real question is: why do you need it? Central key management is not simplified key management. Central key management requires architectural and deployment changes. Consolidation of key storage and use policies does not ensure easier management, but does mean increased cost. Few people want or need centralized key management. Putting all your keys from every application or services into a single monolithic key management store offers few advantages, and creates a number of problems itself. The implication is that a central server will offer easier management, increased redundancy, and greater functionality; but these are often illusory benefits, based on solving a problem you did not have to begin with. In practice the internal and external key services that came with the products you already own are likely not only sufficient, but better. Here’s why: No reason to share keys – Databases, disks, applications, file systems, and wherever else you encrypt seldom (if ever) need to share keys across these different services. Even if the encryption algorithm, key type, and key size are all consistent, there is no need to share keys between your tape drive and web application server. Using encryption to provide data integrity and privacy is a common goal, but the use cases and technical constraints are radically different. Redundant – Why use it if it is already built into your application? Internal key management is built into most applications and cryptographic systems such as storage products and file-level encryption tools. External key management – for products that really need external support for good key security and proper separation of duties (SoD) – is provided by application libraries and database encryption products. Failover, backup, management interfaces, rotation, and cipher strength are all common features, so why centralize? Multiple services mean more interfaces to learn, but inherently provides SoD and focused policy management. Cost – Central key management servers are standalone, dedicated products. They excel in areas such as key security, ease of use, key sharing, etc. But they are still an additional investment. Policy Management – A single management console to manage the system sounds like a great convenience, but I don’t always want the same policies across dissimilar applications and use cases. In fact, I usually want different key lengths, different rotation schedules, and different ciphers, depending on the data I am protecting, and prefer the granularity to specify them at the level of an individual use case. Single administration Console Having a single location to manage keys is conceptually useful. It may actually be useful if you have a very large number of users or must distribute keys and data across a large organization. Most of you reading this, however, work for small shops, and the one or two areas where you have deployed encryption do not require centralization. Few of you are at large enough organizations to worry about thousands of users each with hundreds of keys – and thus to need central key management to address data access issues across a dispersed environment. Key rotation – Having a central key server to automate key management, especially the complexity of key rotation, is a common motivator for central services. Rotation, or key-cycling, is a common feature whereby key management products periodically issue new keys on the premise that with sufficient time and effort, someone will be able to discover the encryption keys in use. Theoretically you would issue a new key and then re-encrypt all data under the new key, but in practice it would take months of even years to re-encrypt everything, as the data sets are simply too large, and the media might even be off-line or off-site. In this scenario data is only re-encrypted under new keys opportunistically when it’s rewritten (perhaps also when it’s reread). But there is no guarantee that data will be re-encrypted. With every key rotation cycle, a new set of keys is generated, and the old ones must be retained to decrypt older data. Over time data will be encrypted under so many different keys that you must use a key manager just to keep track of what’s what. It’s a side effect of the encryption scheme, and for a modicum of extra security you get a bloated key server. Better to keep this compartmentalized than centralized. Don’t go looking for central key management when external key management is all you need. Central key management is occasionally necessary – most often for existing systems with really bad built-in key management, geographically dispersed servers that require key sharing, or thousands of users each with multiple keys. A single point of management is veru much a secondary advantage, however, and should not drive your decisions. So why do you think you need it? What’s the advantage to you? Share:

Share:
Read Post

Level 4 Apathy

I was perusing some of my saved links from the past few weeks and came across Shimmy’s dispatch from the ETA (Electronic Transaction Association) show, which is a big conference for payment processors. As Alan summarized, here are the key takeaways from the processors: They view the PCI Council as not caring about Level 3 and 4 merchants. Basically a shark with no teeth. They don’t see smaller merchants as a big risk. They believe their responsibility ends when a ‘program’ is in place. Alan uses the rest of his post to beat on the PCI scanning shylocks, who are offering services for $1 per merchant, to get their vulnerability scan checkbox and to fill out the SAQ. But my perspective is a bit different. Right there, in the flesh, is the compliance-centric mindset. It’s not about outcomes, it’s about checking the box. And we can decide to get all upset about it, but that would be a waste of time. You see, apathy is usually a result of some kind of analysis (either conscious or unconscious). I suspect the processors have done the math and decided to focus their risk management on the places where they lose the most money – presumably the Level 1 and 2 merchants. Now I haven’t seen the fraud reports from any of these folks, but I presume they do a bit of analysis on to where their ‘shrinkage’ occurs, and if a large portion of it was Level 3 and 4 merchants, then Mr. Market would expect them to be much more aggressive about making real security changes at that level. But they aren’t, so the only conclusion I can draw is that even though (as Alan says) 85% of the incidents take place at smaller merchants, it’s probably only a small portion of the total dollars in fraud. To be clear, I could be making that up, and/or the processors could just be crappy at understanding their risk profiles. But I don’t think so. I think as an industry we really have to start thinking about the point of diminishing returns. Where is the line where increasing our efforts to secure small companies just doesn’t matter? You know, where the economic benefit of reduced fraud is outweighed by the cost of making those security improvements. Seems like the PCI Council is already there. Of course, the trade press will still get all aflutter about the builder or shop owner whose accounts are looted for $100K or $500K, and then they go out of business. That’s sad, but it seems the card value chain is focused on stopping the $100M losses, and is willing to accept the $100K fraud. Predictably, the system is figuring out how to game the lower levels of the regulation, where the focus is non-existent. Though it probably pisses you off, you shouldn’t be surprised. After all, it’s just simple economics, right? Share:

Share:
Read Post

Friday Summary: April 16, 2010

I am sitting here staring at power supplies and empty cases. Cleaning out the garage and closets, looking at the remnants from my PC building days. I used to love going out to select new motherboard and chipset combinations, hand-selecting each component to build just the right database server or video game machine. Over the years one sad acknowledgement needed to be made: after a year or so, the only pieces worth a nickel were the power supply and the case. Sad, but you spend $1,500.00 and after a few months the freaking box that housed the parts was the only remaining item of value. I was thinking about this during some of our recent meetings with clients and would-be clients. Rich, Mike, and I are periodically approached by investors to review portfolio companies. We look both at their technology and market opportunities, and determine whether we feel the product is hitting the mark, and reaching buyers with the right product and message. We are engaged in response to either mis-aligned vision between investors and company operators (shocker, I know), or more commonly to give the investors some understanding of whether the company is worth salvaging through additional investment and a change of focus. Sometimes the company has followed market trends to preserve value, but quite a few turn out to be just a box of old parts. If this is not a direct consequence of Moore’s law, it should be. We see cases where technologies were obsolete before the hit they market. In a handful of instances, we do find one or two worth salvaging, but not for the reasons they thought. In those cases the engineering staff was smart enough, or lucky enough, to build a deployment model or architecture that is currently relevant. The core technology? Forget it. Pitch it in the dust bin and take the write-off because that $20M investment is spent. But the ‘box’ was valuable enough to salvage, invest in, or sell. It’s ironic, and it goes to show how tough technology start-ups are to get right, and that luck is often better than planning. On to the Summary: Webcasts, Podcasts, Outside Writing, and Conferences Living with Windows: security. Rich wrote this up for Macworld. Rich’s Putting the Fun in Dysfunctional presentation at RSA. Adrian’s PCI Database Security Primer, part 1, at Dark Reading. Favorite Securosis Posts Mike Rothman: FireStarter: No User Left Behind. User education is critical, but it needs to be done right, with the right incentives. David Mortman: ESF: Building the Endpoint Security Program. Rich: Anti-Malware Effectiveness: The Truth Is out There. Lies, damn lies, and testing. Adrian Lane: ESF: Full Disk Encryption. Other Securosis Posts ESF: Endpoint Compliance Reporting. Incite 4/14/2010: Just Think. ESF: Controls: Firewalls, HIPS, and Device Control. FireStarter: No User Left Behind. ESF: Controls: Anti-Malware. Friday Summary: April 9, 2010. Database Security Fundamentals: Auditing Transactions. Favorite Outside Posts Mike Rothman: if security wasn’t hard, everyone would do it. Lonervamp nails this one. Tools are great, but it’s people who have to implement the programs. David Mortman: For Thirty Pieces of Silver My Product Can Beat Your Product. Lori MacVittie brings the Rothman-esque smackdown! Pepper: apache.org server cracked: some passwords sniffed; others brute-forced. Time to change some passwords…. Rich: The Spider That Ate My Site. Okay, I hate to admit this but I did something similar to our back end management interface. When admin buttons like “delete” are merely links, a simple spider can cause some serious damage. Adrian Lane: Thinking About The Apache.org Attacks. Actually raises more questions that it answers. What does it say about security when software as prevalent as Apache has a flaw? SHA 256 has been around forever. And I get that the fewer attacks means less exposure of inherent flaws, but complexity of software plays a similar role in masking flaws. Project Quant Posts Project Quant: Database Security – Change Management. Project Quant: Database Security – Patch. Top News and Posts The Spy in the Middle. SSL Certificate Authority trust is a hot topic lately – scary because browsers inherently trust so many CAs, and we know some of them are untrustworthy. US government finally admits most piracy estimates are bogus. Not that it will stop them. Personally, I welcome our RIAA and MPAA thought police overlords. Google to Reveal Research into Fake AV Operations. Hackers exploit new Java zero-day bug. Apple Patches Pwn2Own Flaw That Hacked Safari. Rsnake on the significance of CSRF. If you don’t know who Immunet is and what they do, now’s a good time to read Brain Krebs’ interview with Adam O’Donnell and Adam Huger. Oracle’s April CPU advisory. Nothing cataclysmic. Microsoft on the other hand announced a couple critical patches, and the Authenticode bypass hack looks serious. Blog Comment of the Week Remember, for every comment selected, Securosis makes a $25 donation to Hackers for Charity. This week’s best comment goes to LonerVamp, in response to Security Incite: Just Think. Nice opening post, especially with the kicker at the end that you’re actually writing it on a plane! 🙂 I definitely find myself purposely unplugging at times (even if I’m still playing with something electronic) and protecting my private time when reasonable. I wonder if this ultimately has to do with the typically American concept of super-efficiency…milking every waking moment with something productive…at the expense of the great, relaxing, leisure things in life. I could listen to a podcast during this normally quiet hour in my day! And so on… @Porky Risk…Pig: It doesn’t help that every security professional shotguns everyone else’s measurements…and with good reason! At some point, I think we’ll have to accept that every company CEO is different, and it takes a person to distill the necessary information down for her consumption. No tool will ever be enough, just like no tool ever determines if a product will be successful. @My dad can beat up your dad: Ugh…I have some pretty strong opinions about cyberbullying and home internet monitoring…but I tend to

Share:
Read Post

Public Goods

Chris Pepper tweeted a very cool post on Why Content is a Public Good. The author, Milena Popova, provides an economist’s perspective on market forces and digital goods. Her premise is that in economic terms, many types of electronic content are “public goods” – that being a technical term for objects with infinite supply and no good way to control consumption. She makes the economic concepts of ‘rival’ and ‘excludable’ very easy to understand, and by breaking it down into rudimentary components, makes a compelling argument that content is a public good: It means that old business models based on content being a club good simply don’t work. It means we have to rethink our relationship with content – as creators, as distributors and as consumers. It means that there are a lot of giants in the content distribution industry whose livelihoods (profit margins) are being pulled out from under them faster than they can say “illegal downloads”, and they are fighting it. Of course they’re fighting it. They’ve had an incredibly profitable business model for about a century and suddenly they don’t. Let’s face it, human beings don’t like change at the best of times, and we sure as hell don’t like it when it means less cash in our pockets. I have written many posts on how economics affect DRM, RIAA, and ‘piracy’; and on the difference between actual security and security marketing, so I won’t rehash those subjects here; but note the common theme is that a busted business model is the root of the problem. Right now I want to stay away from some of the negativity of those posts, and instead focus on the economic drivers. Ms. Popova does a much better job than I of isolating the underlying forces, and discusses the factors in a way that helps us begin to visualize possible solutions. A lot of people have a hard time with the concept of free and how you can actually make money in a world with so much free stuff. In a capitalist society we all have trouble with this. I talk to people in IT who still don’t think Linux and Java are viable technologies, and no one could make money with those products. But the availability of free stuff requires you to think a little differently about value – fewer people will pay money for the everyday and ordinary stuff because they don’t have to, but they will pay for things they perceive as special. In fact, I don’t think I fully grasped the concept and implications until I started working at Securosis. We are a research company that gives away most of our products for free, but charges for services and engagements. One area I where was at odds with Popova was on the concept of “price discrimination”. From my perspective this looks more like the market being able to set the price, but do so far more efficiently: person to person, item by item, and adjusted over time. This is a very cool concept if you think about something like television: If you pay channel by channel, how many channels would you pay for? You have 400 or so, but I bet when it came to spending money, very few would get your hard-earned dollars. The NFL knows this, as football not only drives huge ad revenue, but single-handedly the bulk of hi-def television sales and additional add-on packages. If it was not for bundling into programming packages, many (most?) other channels would not be able to survive. All in all, one of the better posts I have seen on the problems of dealing with consumer media. Share:

Share:
Read Post

ESF: Endpoint Incident Response

Nowadays, the endpoint is the path of least resistance for the bad guys to get a foothold in your organization. Which means we have to have a structured plan and process for dealing with endpoint compromises. The high level process we’ll lay out here focuses on: confirming the attack, containing the damage, and then performing a post-mortem. To be clear, incident response and forensics is a very specialized discipline, and hairy issues are best left to the experts. But that being said, there are things you as a security professional need to understand, to ensure the forensics guys can do their jobs. Confirming the attack There are lots of ways your spidey-sense should start tingling that something is amiss. Maybe it’s the user calling up and saying their machine is slow. Maybe it’s your SIEM detecting some weird log records. It could be your configuration management system reverting inexplicable changes or noting the presence of strange executables. Or perhaps your network flow analysis shows some reconnaissance activities from the device. A big part of the security management process is about being able to fire alerts when something suspicious is happening. Then we make like bloodhounds and investigate the issue. We’ve got to find the machine and isolate it. Yes, that usually means interrupting the user and ‘inviting’ them to grab a cup of coffee, while you figure out what a mess they’ve made. The first step is likely to do a scan and compare with your standard builds (you remember the standard build, right?). Basically we look for obvious changes that cause issues. If it’s not an obvious issue (think tons of pop-ups), then you’ve got to go deeper. This usually requires forensics tools, including stuff to analyze disks and memory to look for corruption or other compromise. There are lots of good tools – both open source and commercial – available for your forensics toolkit. We do recommend you take a course in simple forensics as you get started, for a simple reason. You can really screw up an investigation by doing something wrong, in the wrong order, or using the wrong tools. If it’s truly an attack, your organization may want to prosecute at some point, and that means you have to maintain chain of custody on any evidence you gather. You should consult a forensics expert and probably your general counsel to identify the stuff you need to gather from a prosecution standpoint. Containing the damage “Houston, we have a problem…” Yup, your fears were justified and an endpoint or 200 have been compromised – so what to do? First off, you should inherently know what to do because you have a documented incident response plan, and you’ve practiced the process countless times, and your team springs into action without prompting, right? OK, this is the real world, so hopefully you have a plan and your team doesn’t look at you like an alien when you take it to DEFCON 4. In all seriousness, you need to have an incident response plan. And you need to practice it. The time to figure out your plan stinks is not while a worm is proliferating through your innards at an alarming rate. We aren’t going to go into depth on that process (we’ll be doing a series later this year on incident response), but the general process is as follows: Quarantine – Bad stuff doesn’t spread through osmosis – you need a network in place to allow malware to find new targets and spread like wildfire, so first isolate the compromised device. Yes, user grumpiness may follow, but whatever. They got pwned, so they can grab a coffee while you figure out how to contain the damage. Assess – How bad is it? How far has it spread? What are your options to fix it? The next step in the process is to understand what you are dealing with. When you confirm the attack, you probably have a pretty good idea what’s going on. But now you have to figure out what the best option(s) is to fix it. Workaround – Are there settings that can be deployed on the perimeter or at the network layer that can provide a short term fix? Maybe it’s blocking communication to the botnet’s command and control. Or possibly blocking inbound traffic on a certain port or some specific non-standard protocol that is the issue. Obviously be wary of the ripple effect of any workaround (what else does it break?), but allowing folks to get back to work quickly is paramount, so long as you can avoid the risk of further damage. Remediate – Is it a matter of changing a setting or uninstalling some bad stuff? That would be optimistic, eh? Now is when you figure out how to fix the issue, and increasingly these days re-imaging is the best answer. Today’s malware hides so well it’s almost impossible to entirely inoculate a compromised device, and impossible to know you got it all. Which means part of your incident response plan should be a leveraged way to re-image machines. At some point you have to figure out if this is an incident you can handle yourself, or if you need to bring in the artillery, in the form of forensics experts or law enforcement. Your IR plan needs to be identify scenarios which call for experts, and which call for the law. You don’t want that to be a judgement call in the heat of battle. So define the scenarios, establish the contacts (at both forensics firms and law enforcement), and be ready. That’s what IR is all about. Post mortem Once most folks get done cleaning up an incident, they think the job is done. Well, not so much. The reality is that the job has just begun, since you need to figure out what happened and make sure it doesn’t happen again. It’s OK to get nailed by something you haven’t seen before (fool me once, shame on you). It’s

Share:
Read Post

ESF: Endpoint Compliance Reporting

You didn’t think we could get through an 11-part series about anything without discussing compliance, did you? No matter what we do from a security context – whatever the catalyst, budget center, or end goal – we need to substantiate implemented controls. We can grind out teeth and curse the gods all we want, but security investments are contingent on some kind of compliance driver. So we need to focus on documentation and reporting for everything we do. Further, we discussed operational efficiencies in the security programs post, and the only way to get any kind of leverage from an endpoint security program is to automate the reporting. Document what? First we need to understand what needs to be documented from an endpoint perspective for the regulations/standards/guidance you deal with. You must be able to document the process/procedures of your endpoint program, as well as the data substantiating the controls. Process either exists or it doesn’t, so that documentation should be straightforward to produce. On the other hand, figuring out which data types corroborate which controls and apply to which standards requires a big matrix to handle all the permutations and combinations. There are two ways to do this: Buy it – Many of the IT GRC tools out there (and don’t get us started on the value of IT GRC tools) help to manage the workflow of a compliance program. The key capability here is the built-in map, which connects technical controls to regulations, ostensibly so you don’t have to. But these tools cost money and provide limited value. Build it – The other option involves going through your regulations and figuring out relevant controls. This is about as fun as a root canal, but it has to be done. More likely, you can start with something your buddies, auditor, or vendors have. Vendors have excellent motivation to figure out how their products – representing a variety of security controls – map to the various regulations their customers need to address. The data is out there – you just have to assemble it. Actually, there is a third option: to just license the content from an organization like the Unified Compliance Framework folks. They license a big-ass spreadsheet with the map, and their pricing is rather economical. Packaging Now that you know what you need to report on, how do you do it? This question is bigger than your endpoint security program, and applies to every security program you run. We recommend you think architecturally. You’ve got certain domains of controls – think network, endpoint, data center, applications, etc. You want to put together a few things for each domain to make the auditor happy: Control list – Go back to your control maps and make a big list of all the controls required for the auditor’s checklist (they all have checklists). Make sure the auditor buys into your list, and that you aren’t missing anything. Logical architecture – Show graphically (a picture is worth a thousand words) how your controls are implemented. Right – every control on the list should appear on the logical architecture. Data – You didn’t really think the auditor would just believe your architecture diagram, did you? Now you need the data from each of your systems (endpoint suite, configuration management, full disk encryption, etc.) to show that you’ve actually implemented the controls. Your vendor likely has a pre-built report for your regulation, so you shouldn’t have to do a lot of manual report generation. To be clear, one of the value propositions of IT GRC and other compliance automation products like log management/SIEM is to aggregate all this information (not just from the endpoint program, but from all your programs) and spit out an integrated report. For the most part, with a bit of angst in deployment, these tools can help reduce the burden of preparing for frequent audits across multiple regulations for global enterprises. The question to answer is whether the tool can pay for itself in terms of saved time and effort – is the ROI sufficient? Dealing with deficiencies One other thing to consider is the reality of an audit pointing out a specific deficiency in your endpoint security program. The auditor/assessor is there to find problems, and likely they will. But that doesn’t mean the auditor is right. Yes, we said it. Sometimes auditors take liberties and/or subjectively decide how to interpret a specific regulation. If there is a specific reason you decided to either bypass a control – or more likely, implement a compensating control – make your case. In the event (however unlikely) there is a legitimate deficiency, you need to fix it. Welcome, Captain Obvious! During the next audit, first go through the list of previous deficiencies and how you’ve remediated them. Make a big deal of addressing the deficiencies, which will get the audit off on the right foot. What’s next? We’ll cap off the Endpoint Security Fundamentals series by talking about incident response. Stay tuned for the exciting conclusion. 😉 Other posts in the Endpoint Security Fundamentals Series Introduction Prioritize: Finding the Leaky Buckets Triage: Fixing the Leaky Buckets Controls: Update and Patch Controls: Secure Configurations Controls: Anti-Malware Controls: Firewall, HIPS, and Device Control Controls: Full Disk Encryption Building the Endpoint Security Program Share:

Share:
Read Post

Incite 4/14/2010: Just Think

As numb as we are to most advertising (since we are hit with thousands of advertising exposures every day), sometimes an ad campaign is memorable and really resonates. No, seeing Danica Patrick on a massage table doesn’t qualify. But Apple’s Think Different campaign really did. At that point, Apple was positioning to the counter-culture, looking for folks who didn’t want to conform. Those who had their own opinions, but needed a way to set them loose on the world. Of course, we all want to think we are more than just cogs in the big machine and that we do matter. So the campaign resonated. But nowadays I’m not so worried about thinking differently, but just thinking at all. You see, we live in a world of interruption and multitasking. There is nowhere to hide any more, not even at 35,000 feet. Flying used to be my respite. 2-5 hours of solitude. You know, put in the ear buds, crank up the iPod, and tune out. Maybe I’d catch up on some writing or reading. Or even at the risk of major guilt, I’d get some mental floss (I’m plowing through the Daniel Silva series now) and crank through some fiction on the flight. Or Lord help me, sometimes I’d just sit and think. An indulgence I don’t partake in nearly enough during my standard routine. Yet through the wonders of onboard WiFi, you can check email, surf the Web, tweet to your friends (yo, dog, I’m at 30K feet – and you are not!) or just waste time. All for $9.95 per flight. What a bargain. And if you absolutely, positively need to send that email somewhere over Topeka, then the $9.95 is money well spent. Yet in reality, I suspect absolutely, positively means when you get to your destination. What you don’t see is the opportunity cost of that $9.95. Not sure you can put a value on spending 3 hours battling spies or catching up on some journaling or even revisiting your plans for world domination. On my way back from RSA, I did use the on-board WiFi and to be honest it felt like a piece of me died. I was pretty productive, but I didn’t think, and that upset me. The last bastion of solitude was gone, but certainly not forgotten. So yes, I’m writing this from 34,701 feet somewhere above New Mexico. But my battery is about dead, and that means it’s time to indulge. There are worlds to dominate, windmills to chase, strategies to develop, and I can’t do that online. Now quiet down, I need to think… – Mike. PS: Good luck to AndyITGuy, who is leaving his ATL digs to head to Cincy. Hopefully he’ll keep writing and plug into the security community in Southern Ohio. Photo credits: “think___different” originally uploaded by nilson Incite 4 U Porky, Risk Management, Pig – Let’s all welcome Jack Jones back to bloggy land, and he restarts with a doozy – basically saying risk management tools are like putting lipstick on a pig. Being a vegetarian and thinking about actually putting lipstick on a pig, I can only think of the truism from Jules in Pulp Fiction, “we’d have to be talkin’ about one charming motherf***ing pig.” But I’ll summarize Jack’s point more succinctly. Garbage In = Garbage Out. And even worse, if the analysis and the outcomes and the quantification are lacking, then it’s worse than garbage out: it’s sewage out. But senior management wants a number when they ask about risk, and the weak security folks insist on giving it to them, even though it’s pretty much arbitrary. Off soapbox now. – MR Craponomics – Repeat after me – it’s all about the economics. (I’m starting to wish I took one of those econ classes in school). According to the New York Times, lenders sort of ignore many of the signs of ID theft because they’d rather have the business. The tighter the fraud controls, the fewer people (legitimate and criminal) they can lend to, and the lower the potential profits. It’s in their interest to tolerate a certain level of fraud, even if that hurts ID theft victims. Remember, the lenders are out to protect themselves, not you. Can you say moral hazard? – RM Partly Paranoid, with a chance of PR – From what I hear, Google is now paranoid about security. Call me a cynic, but when someone trashes your defenses, is your response to use more web-based computing products and services, like Google Chrome? I am sure they are thinking they’ll modernize their defenses with Chrome, and all those old threat vectors will be magically corrected. You know, like XSS and injection attacks. I am thinking, “Someone broke into my company, now Chrome’s source code is suspect until I can prove attackers did not gain access to the source code control system.” Give Google credit for disclosure, and odds are they will be more secure with Chrome, but that was just a stepping stone in the process. I am far more interested in the steps taken to provide redundant security measures and perhaps some employee education on anti-phishing and security. Something that helps after an employee’s browser is compromised. There will always be another browser hack, so don’t tell me the answer is Chrome. Blah. – AL Yes, you are an addict… – It was funny to read Chris Nickerson’s post on FUDSEC about being a security addict, especially since that’s the entire premise of the Pragmatic CSO. But we look at the problem from different perspectives. Chris is right in pointing out that although we security folks tend to be powerless, that doesn’t mean we are helpless. It’s an important nuance. Personally I found his 12 steps lacking, especially compared to mine. But he also was working within the context of one blog post, and I wrote a book. All kidding aside, there are things we can control and things we can’t. Security is a hard job and

Share:
Read Post

ESF: Building the Endpoint Security Program

Over the previous 8 posts in this Endpoint Security Fundamentals series, we’ve looked at the problem from the standpoint of what to do right awat (Prioritize and Triage) and the Controls (update software and patch, secure configuration, anti-malware, firewall, HIPS and device control, and full disk encryption). But every experienced security professional knows a set of widgets doesn’t make a repeatable process, and it’s really the process and the people that makes the endpoints secure. So let’s examine how we take these disparate controls and make them into a program. Managing Expectations The central piece of any security program is making sure you understand what you are committing to and over-communicating your progress. This requires a ton of meetings before, during, and after the process to keep everyone on board. More importantly, the security team needs a standard process for communicating status, surfacing issues, and ensuring there are no surprises in task completion or results. The old adage about telling them what you are going to do, doing it, and then telling them what you did, is absolutely the right way to handle communications. Forget the ending at your own peril. Defining success The next key aspect of the program is specifying a definition for success. Start with the key drivers for protecting the endpoints anyway. Is it to stop the proliferation of malware? To train users? To protect sensitive data on mobile devices? To improve operational efficiency? If you are going to spend time and money, or to allocate resources you need at least one clear driver / justification. Then use those drivers to define metrics, and operationalize your process based on them. Yes, things like AV update efficiency and percentage of mobile devices encrypted are uninteresting, but you can trend off those metrics. You also can set expectations at the front end of the process about acceptable tolerances for each one. Think about the relevant incident metrics. How many incidents resulted from malware? User error? Endpoint devices? These numbers have impact – whether good or bad. And ultimately it’s what the senior folks worry about. Operational efficiency is one thing – incidents are another. These metrics become your dashboard when you are communicating to the muckety-mucks. And remember to use pie charts. We hear CFO-types like pie charts. Yes, I’m kidding. User training Training is the third rail of security, and needs discussion. We are fans of training. But not crappy, check-the-box-to-make-the-auditor-happy training. Think more like phishing internal users and, using other social engineering tactics to show employees how exposed they are. Good training is about user engagement. Unfortunately most security awareness training sucks. Keep the goals in mind. The end user is the first line of defense (and for mobile professionals, unfortunately also the last) so we want to make sure they understand what an attack looks like and what to do if they think they might have a problem. They don’t have to develop kung fu, they just need to understand when they’ve gotten kicked in the head. For more information and ideas, check out Rich’s FireStarter from Monday. Operational efficiencies Certainly one of the key ways to justify the investment in any kind of program is via operational efficiencies, and in the security business that means automation whenever and wherever possible. So just think about the controls we discussed through this series, and how to automate them. Here’s a brief list: Update and Patch, Secure Configurations – Tools to automate configuration management kill these two birds with one stone. You set a policy, and can thus both enforce standard configurations and keep key software updated. Anti-malware, FW/HIPS – As part of the endpoint suites, enforcing policies on updates, software distribution and policy settings are fairly trivial. Here is the leverage (and the main justification) for consolidating vendors on the endpoint – just beware folks who promise integration, but fail to deliver useful synergy. Device control, full disk encryption, application white listing – These technologies are not as integrated into the endpoint suites at this point, but as the technologies mature, markets consolidate, and vendors actually get out of their own way and integrate the stuff they buy, this will get better. Ultimately, operational efficiencies are all about integrating management of the various technologies used to protect the endpoint. Feedback loops The other key aspect of the program is making sure it adapts to the dynamic nature of the attack space. Here are a few things you should be doing to keep the endpoint program current: Test controls – We are big fans of hacking yourself, which means using hacking tools to test your own defenses. Check out tools like Metasploit and the commercial offerings, and send phishing emails to your employees trying to get them to visit fake sites – which presumably would pwn them. This is a critical aspect of the security program. Endpoint assessment – Figure out to what degree your endpoints are vulnerable, usually by scanning devices on connect with a NAC-type product, or with a scanner. Look for patterns to identify faulty configuration, ineffective patching, or other gaps in the endpoint defenses. Configuration updates – A couple times a year new guidance emerges (from CIS and NIST, etc.) recommending changes to standard builds. Evaluating those changes, and figuring out whether and how the builds should change, helps to ensure the endpoint protection is always adapted to current attacks. User feedback – Finally, you need to pay attention to the squeaky wheels in your organization. Well, not entirely, but you do have to factor in whether they are complaining about draconian usage policies – and more importantly whether some the controls are impeding their ability to do their jobs. That’s what we are trying to avoid. The feedback loops will indicate when it’s time to revisit the controls, perhaps changing standard builds or considering new controls or tools. Keep in mind that without process and failsafes to keep the process relevant, all the technology in the world can’t help. We’ll wrap up

Share:
Read Post

ESF: Controls: Full Disk Encryption

It happens quickly. An end user just needed to pick up something at the corner store or a big box retailer. He was in the store for perhaps 15 minutes, but that was plenty of time for a smash and grab. And then your phone rings, a laptop is gone, and it had information on about 15,000 customers. You sigh, hang up the phone and call the general counsel – it’s disclosure time. Sound familiar? Maybe this has been you. It likely will be, unless you proactively take action to make sure that the customer data on those mobile devices cannot be accessed by whoever buys the laptop on the gray market. That’s right, you need to deploy full disk encryption (FDE) on the devices. Unless you enjoy disclosure and meeting with lawyers, that is. Features Ultimately, encryption isn’t very novel. But managing encryption across an enterprise is, so key management and ease of use end up being the key features that generally drive FDE. As we’ve harped throughout this series, integration of that management with the rest of the endpoint functions is critical to gaining leverage and managing all the controls implemented on the endpoints. Of course, that’s looking at the issue selfishly from the security professional’s perspective. Ultimately the success of the deployment depends on how transparent it is to users. That means it needs to fit in with the authentication techniques they already use to access their laptops. And it needs to just work. Locking a user out of their data, especially an important user at an inopportune, time will make you a pretty unpopular person. Finally, don’t forget about those backups or software updates. If your encryption breaks your backups (and you are backing up all those laptops, right?) it’s a quick way to find yourself in the unemployment line. Same goes for having to tell the CIO everyone needs to bring their laptops back to the office every Patch Tuesday to get those updates installed. Integration with Endpoint Suites Given the natural order of innovation and consolidation, the industry has seen much consolidation of FDE solutions by endpoint vendors. Check Point started the ball rolling by acquiring Pointsec; shortly afterwards Sophos acquired Utimaco and McAfee acquired SafeBoot, which of course gives these vendors the ability to bundle FDE with their endpoint suites. Now bundling on the purchase order is one thing, but what we are really looking for is bundling from a management standpoint. Can the encryption keys be managed by the endpoint security management console? Is your directory supported natively? Can the FDE policies be set up from the same interface you use for host firewalls and HIPS policies? Unless this level of integration is available, there is little leverage in using FDE from your endpoint vendor. Free (as in beer?) Like all good innovations, the stand-alone companies get acquired and then the capability tends to get integrated into the operating system – which is clearly the case with FDE. Both Microsoft BitLocker and Apple FileVault provide the capability to encrypt at the operating system level (Bitlocker is full drive, FileVault is OS). Yes, it’s free, but not really. As mentioned above, encryption isn’t really novel anymore, it’s the management of encryption that makes the difference. Neither Microsoft nor Apple currently provides adequate tools to really manage FDE across an enterprise. Which means there will remain a need for third party managed FDE for the foreseeable future, and that also means the endpoint security suite is the best place to manage it. We expect further integration of FDE into endpoint security suites, further consolidation of the independent vendors, and ultimately commoditization of the capability. So we’ll joke over beers in a few years about how you use to pay separately for full disk encryption. Now that we’ve examined the controls we use to protect the endpoints, we need to build a systematic program to ensure these controls are deployed, enforced, and reported on. That’s our topic for the next two posts, as we build the endpoint security program also consider what kind of reporting we need to keep the auditors happy. Other posts in the Endpoint Security Fundamentals Series Introduction Prioritize: Finding the Leaky Buckets Triage: Fixing the Leaky Buckets Controls: Update and Patch Controls: Secure Configurations Controls: Anti-Malware Controls: Firewall, HIPS, and Device Control Share:

Share:
Read Post

FireStarter: No User Left Behind

Not to bring politics into a security blog, but I think it’s time we sit down and discuss the state of education in this country… I mean industry. Lance over at HoneyTech went off on the economics/metrics paper from Microsoft we recently discussed. Basically, the debate is over the value of security awareness training. The paper suggests that some training isn’t worth the cost. Lance argues that although we can’t always directly derive the desired benefits, there are legitimate halo effects. Lance also points out that the metrics chosen for the paper might not be the best. I’d like to flip this a little bit. The problem isn’t the potential value of awareness training – it’s that most training is total crap. When we improperly design the economics, incentives and/or metrics of the system, we fail to achieve desired objectives. Right, it’s not brain surgery. Let’s use the No Child Left Behind act here in the US as an example. This law requires standardized testing in schools, and funding is directly tied to test results. Which means teachers now teach to do well on an exam, rather than to educate. Students show up at universities woefully unprepared due to lack of general knowledge and possession of a few rote skills. It is the natural outcome of the system design. Most security awareness training falls into the same trap. The metrics tend to be test scores and completion rates. So organizations dutifully make sure employees sit through the training (if that’s what you want to call it) and get their check mark every year. But that forgets why we spend time and money to perform the training in the first place. What we really care about is improving security outcomes, which I’ll define as a reduction in frequency and severity of security incidents. Not about making sure every employee can check a box. Thus we need outcome-based security awareness programs, which means we have to design our metrics and economics to support measurable improvements in security. Rather than measuring how many people took a class or passed a stupid test, we should track outcomes such as: For a virus infection, was user interaction involved? User response rates to phishing spam. Results from authorized social engineering penetration tests. Tracking incidents where the user was involved can determine whether the incident was reasonably preventable, and whether the user was (successfully) trained to avoid that specific type of incident. Follow the trends over time, and feed this back into your awareness program. If all you do is force people to sit through boring classes or follow mind-numbing web-based training, and then say your training was successful if they can answer a few multiple choice questions, you are doing it wrong. So we have not given up hope on the impact of security awareness training. If we focus on tracking real world outcomes, not auditor checklist garbage like how many people signed a policy or sat in a chair for a certain number of hours, it can make a difference. Are taking too many hits off the peace pipe? Have any of you had a measurable impact of training in your environment? Speak up in the comments. Share:

Share:
Read Post

Totally Transparent Research is the embodiment of how we work at Securosis. It’s our core operating philosophy, our research policy, and a specific process. We initially developed it to help maintain objectivity while producing licensed research, but its benefits extend to all aspects of our business.

Going beyond Open Source Research, and a far cry from the traditional syndicated research model, we think it’s the best way to produce independent, objective, quality research.

Here’s how it works:

  • Content is developed ‘live’ on the blog. Primary research is generally released in pieces, as a series of posts, so we can digest and integrate feedback, making the end results much stronger than traditional “ivory tower” research.
  • Comments are enabled for posts. All comments are kept except for spam, personal insults of a clearly inflammatory nature, and completely off-topic content that distracts from the discussion. We welcome comments critical of the work, even if somewhat insulting to the authors. Really.
  • Anyone can comment, and no registration is required. Vendors or consultants with a relevant product or offering must properly identify themselves. While their comments won’t be deleted, the writer/moderator will “call out”, identify, and possibly ridicule vendors who fail to do so.
  • Vendors considering licensing the content are welcome to provide feedback, but it must be posted in the comments - just like everyone else. There is no back channel influence on the research findings or posts.
    Analysts must reply to comments and defend the research position, or agree to modify the content.
  • At the end of the post series, the analyst compiles the posts into a paper, presentation, or other delivery vehicle. Public comments/input factors into the research, where appropriate.
  • If the research is distributed as a paper, significant commenters/contributors are acknowledged in the opening of the report. If they did not post their real names, handles used for comments are listed. Commenters do not retain any rights to the report, but their contributions will be recognized.
  • All primary research will be released under a Creative Commons license. The current license is Non-Commercial, Attribution. The analyst, at their discretion, may add a Derivative Works or Share Alike condition.
  • Securosis primary research does not discuss specific vendors or specific products/offerings, unless used to provide context, contrast or to make a point (which is very very rare).
    Although quotes from published primary research (and published primary research only) may be used in press releases, said quotes may never mention a specific vendor, even if the vendor is mentioned in the source report. Securosis must approve any quote to appear in any vendor marketing collateral.
  • Final primary research will be posted on the blog with open comments.
  • Research will be updated periodically to reflect market realities, based on the discretion of the primary analyst. Updated research will be dated and given a version number.
    For research that cannot be developed using this model, such as complex principles or models that are unsuited for a series of blog posts, the content will be chunked up and posted at or before release of the paper to solicit public feedback, and provide an open venue for comments and criticisms.
  • In rare cases Securosis may write papers outside of the primary research agenda, but only if the end result can be non-biased and valuable to the user community to supplement industry-wide efforts or advances. A “Radically Transparent Research” process will be followed in developing these papers, where absolutely all materials are public at all stages of development, including communications (email, call notes).
    Only the free primary research released on our site can be licensed. We will not accept licensing fees on research we charge users to access.
  • All licensed research will be clearly labeled with the licensees. No licensed research will be released without indicating the sources of licensing fees. Again, there will be no back channel influence. We’re open and transparent about our revenue sources.

In essence, we develop all of our research out in the open, and not only seek public comments, but keep those comments indefinitely as a record of the research creation process. If you believe we are biased or not doing our homework, you can call us out on it and it will be there in the record. Our philosophy involves cracking open the research process, and using our readers to eliminate bias and enhance the quality of the work.

On the back end, here’s how we handle this approach with licensees:

  • Licensees may propose paper topics. The topic may be accepted if it is consistent with the Securosis research agenda and goals, but only if it can be covered without bias and will be valuable to the end user community.
  • Analysts produce research according to their own research agendas, and may offer licensing under the same objectivity requirements.
  • The potential licensee will be provided an outline of our research positions and the potential research product so they can determine if it is likely to meet their objectives.
  • Once the licensee agrees, development of the primary research content begins, following the Totally Transparent Research process as outlined above. At this point, there is no money exchanged.
  • Upon completion of the paper, the licensee will receive a release candidate to determine whether the final result still meets their needs.
  • If the content does not meet their needs, the licensee is not required to pay, and the research will be released without licensing or with alternate licensees.
  • Licensees may host and reuse the content for the length of the license (typically one year). This includes placing the content behind a registration process, posting on white paper networks, or translation into other languages. The research will always be hosted at Securosis for free without registration.

Here is the language we currently place in our research project agreements:

Content will be created independently of LICENSEE with no obligations for payment. Once content is complete, LICENSEE will have a 3 day review period to determine if the content meets corporate objectives. If the content is unsuitable, LICENSEE will not be obligated for any payment and Securosis is free to distribute the whitepaper without branding or with alternate licensees, and will not complete any associated webcasts for the declining LICENSEE. Content licensing, webcasts and payment are contingent on the content being acceptable to LICENSEE. This maintains objectivity while limiting the risk to LICENSEE. Securosis maintains all rights to the content and to include Securosis branding in addition to any licensee branding.

Even this process itself is open to criticism. If you have questions or comments, you can email us or comment on the blog.