Securosis

Research

Musings on Data Security in the Cloud

So I’ve written about data security, and I’ve written about cloud security, thus it’s probably about time I wrote something about data security in the cloud. To get started, I’m going to skip over defining the cloud. I recommend you take a look at the work of the Cloud Security Alliance, or skip on over to Hoff’s cloud architecture post, which was the foundation of the architectural section of the CSA work. Today’s post is going to be a bit scattershot, as I throw out some of the ideas rolling around my head from I thinking about building a data security cycle/framework for the cloud. We’ve previously published two different data/information-centric security cycles. The first, the Data Security Lifecycle (second on the Research Library page) is designed to be a comprehensive forward-looking model. The second, The Pragmatic Data Security Cycle, is designed to be more useful in limited-scope data security projects. Together they are designed to give you the big picture, as well as a pragmatic approach for securing data in today’s resource-constrained environments. These are different than your typical Information Lifecycle Management cycles to reflect the different needs of the security audience.   When evaluating data security in the context of the cloud, the issues aren’t that we’ve suddenly blasted these cycles into oblivion, but that when and where you can implement controls is shifted, sometimes dramatically. Keep in mind that moving to the cloud is every bit as much an opportunity as a risk. I’m serious – when’s the last time you had the chance to completely re-architect your data security from the ground up? For example, one of the most common risks cited when considering cloud deployment is lack of control over your data; any remote admin can potentially see all your sensitive secrets. Then again, so can any local admin (with access to the system). What’s the difference? In one case you have an employment agreement and their name, in the other you have a Service Level Agreement and contracts… which should include a way to get the admin’s name. The problems are far more similar than they are different. I’m not one of those people saying the cloud isn’t anything new – it is, and some of these subtle differences can have a big impact – but we can definitely scope and manage the data security issues. And when we can’t achieve our desired level of security… well, that’s time to figure out what our risk tolerance is. Let’s take two specific examples: Protecting Data on Amazon S3 – Amazon S3 is one of the leading IaaS services for stored data, but it includes only minimal security controls compared to an internal storage repository. Access controls (which may not integrate with your internal access controls) and transit encryption (SSL) are available, but data is not encrypted in storage and may be accessible to Amazon staff or anyone who compromises your Amazon credentials. One option, which we’ve talked about here before, is Virtual Private Storage. You encrypt your data before sending it off to Amazon S3, giving you absolute control over keys and ACLs. You maintain complete control while still retaining the benefits of cloud-based storage. Many cloud backup solutions use this method. Protecting Data at a SaaS Provider – I’d be more specific and list a SaaS provider, but I can’t remember which ones follow this architecture. With SaaS we have less control and are basically limited to the security controls built into the SaaS offering. That isn’t necessarily bad – the SaaS provider might be far more secure than you are – but not all SaaS offerings are created equal. To secure SaaS data you need to rely more on your contracts and an understanding of how your provider manages your data. One architectural option for your SaaS provider is to protect your data with individual client keys managed outside the application (this is actually a useful internal data security architectural choice). It’s application-level encryption with external key management. All sensitive client data is encrypted in the SaaS provider’s database. Keys are managed in a dedicated appliance/service, and provided temporally to the application based on user credentials. Ideally the SaaS prover’s admins are properly segregated – where no single admin has database, key management, and application credentials. Since this potentially complicates support, it might be restricted to only the most sensitive data. (All your information might still be encrypted, but for support purposes could be accessible to the approved administrators/support staff). The SaaS provider then also logs all access by internal and external users. This is only one option, but your SaaS provider should be able to document their internal data security, and even provide you with external audit reports. As you can see, just because you are in the cloud doesn’t mean you completely give up any chance of data security. It’s all about understanding security boundaries, control options, technology, and process controls. In future posts we’ll start walking through the Data Security Lifecycle and matching specific issues and control options in each phase against the SPI (SaaS, PaaS, IaaS) cloud models. Share:

Share:
Read Post

Totally Transparent Research is the embodiment of how we work at Securosis. It’s our core operating philosophy, our research policy, and a specific process. We initially developed it to help maintain objectivity while producing licensed research, but its benefits extend to all aspects of our business.

Going beyond Open Source Research, and a far cry from the traditional syndicated research model, we think it’s the best way to produce independent, objective, quality research.

Here’s how it works:

  • Content is developed ‘live’ on the blog. Primary research is generally released in pieces, as a series of posts, so we can digest and integrate feedback, making the end results much stronger than traditional “ivory tower” research.
  • Comments are enabled for posts. All comments are kept except for spam, personal insults of a clearly inflammatory nature, and completely off-topic content that distracts from the discussion. We welcome comments critical of the work, even if somewhat insulting to the authors. Really.
  • Anyone can comment, and no registration is required. Vendors or consultants with a relevant product or offering must properly identify themselves. While their comments won’t be deleted, the writer/moderator will “call out”, identify, and possibly ridicule vendors who fail to do so.
  • Vendors considering licensing the content are welcome to provide feedback, but it must be posted in the comments - just like everyone else. There is no back channel influence on the research findings or posts.
    Analysts must reply to comments and defend the research position, or agree to modify the content.
  • At the end of the post series, the analyst compiles the posts into a paper, presentation, or other delivery vehicle. Public comments/input factors into the research, where appropriate.
  • If the research is distributed as a paper, significant commenters/contributors are acknowledged in the opening of the report. If they did not post their real names, handles used for comments are listed. Commenters do not retain any rights to the report, but their contributions will be recognized.
  • All primary research will be released under a Creative Commons license. The current license is Non-Commercial, Attribution. The analyst, at their discretion, may add a Derivative Works or Share Alike condition.
  • Securosis primary research does not discuss specific vendors or specific products/offerings, unless used to provide context, contrast or to make a point (which is very very rare).
    Although quotes from published primary research (and published primary research only) may be used in press releases, said quotes may never mention a specific vendor, even if the vendor is mentioned in the source report. Securosis must approve any quote to appear in any vendor marketing collateral.
  • Final primary research will be posted on the blog with open comments.
  • Research will be updated periodically to reflect market realities, based on the discretion of the primary analyst. Updated research will be dated and given a version number.
    For research that cannot be developed using this model, such as complex principles or models that are unsuited for a series of blog posts, the content will be chunked up and posted at or before release of the paper to solicit public feedback, and provide an open venue for comments and criticisms.
  • In rare cases Securosis may write papers outside of the primary research agenda, but only if the end result can be non-biased and valuable to the user community to supplement industry-wide efforts or advances. A “Radically Transparent Research” process will be followed in developing these papers, where absolutely all materials are public at all stages of development, including communications (email, call notes).
    Only the free primary research released on our site can be licensed. We will not accept licensing fees on research we charge users to access.
  • All licensed research will be clearly labeled with the licensees. No licensed research will be released without indicating the sources of licensing fees. Again, there will be no back channel influence. We’re open and transparent about our revenue sources.

In essence, we develop all of our research out in the open, and not only seek public comments, but keep those comments indefinitely as a record of the research creation process. If you believe we are biased or not doing our homework, you can call us out on it and it will be there in the record. Our philosophy involves cracking open the research process, and using our readers to eliminate bias and enhance the quality of the work.

On the back end, here’s how we handle this approach with licensees:

  • Licensees may propose paper topics. The topic may be accepted if it is consistent with the Securosis research agenda and goals, but only if it can be covered without bias and will be valuable to the end user community.
  • Analysts produce research according to their own research agendas, and may offer licensing under the same objectivity requirements.
  • The potential licensee will be provided an outline of our research positions and the potential research product so they can determine if it is likely to meet their objectives.
  • Once the licensee agrees, development of the primary research content begins, following the Totally Transparent Research process as outlined above. At this point, there is no money exchanged.
  • Upon completion of the paper, the licensee will receive a release candidate to determine whether the final result still meets their needs.
  • If the content does not meet their needs, the licensee is not required to pay, and the research will be released without licensing or with alternate licensees.
  • Licensees may host and reuse the content for the length of the license (typically one year). This includes placing the content behind a registration process, posting on white paper networks, or translation into other languages. The research will always be hosted at Securosis for free without registration.

Here is the language we currently place in our research project agreements:

Content will be created independently of LICENSEE with no obligations for payment. Once content is complete, LICENSEE will have a 3 day review period to determine if the content meets corporate objectives. If the content is unsuitable, LICENSEE will not be obligated for any payment and Securosis is free to distribute the whitepaper without branding or with alternate licensees, and will not complete any associated webcasts for the declining LICENSEE. Content licensing, webcasts and payment are contingent on the content being acceptable to LICENSEE. This maintains objectivity while limiting the risk to LICENSEE. Securosis maintains all rights to the content and to include Securosis branding in addition to any licensee branding.

Even this process itself is open to criticism. If you have questions or comments, you can email us or comment on the blog.