So I’ve written about data security, and I’ve written about cloud security, thus it’s probably about time I wrote something about data security in the cloud.

To get started, I’m going to skip over defining the cloud. I recommend you take a look at the work of the Cloud Security Alliance, or skip on over to Hoff’s cloud architecture post, which was the foundation of the architectural section of the CSA work. Today’s post is going to be a bit scattershot, as I throw out some of the ideas rolling around my head from I thinking about building a data security cycle/framework for the cloud.

We’ve previously published two different data/information-centric security cycles. The first, the Data Security Lifecycle (second on the Research Library page) is designed to be a comprehensive forward-looking model. The second, The Pragmatic Data Security Cycle, is designed to be more useful in limited-scope data security projects. Together they are designed to give you the big picture, as well as a pragmatic approach for securing data in today’s resource-constrained environments. These are different than your typical Information Lifecycle Management cycles to reflect the different needs of the security audience.


When evaluating data security in the context of the cloud, the issues aren’t that we’ve suddenly blasted these cycles into oblivion, but that when and where you can implement controls is shifted, sometimes dramatically. Keep in mind that moving to the cloud is every bit as much an opportunity as a risk. I’m serious – when’s the last time you had the chance to completely re-architect your data security from the ground up?

For example, one of the most common risks cited when considering cloud deployment is lack of control over your data; any remote admin can potentially see all your sensitive secrets. Then again, so can any local admin (with access to the system). What’s the difference? In one case you have an employment agreement and their name, in the other you have a Service Level Agreement and contracts… which should include a way to get the admin’s name.

The problems are far more similar than they are different. I’m not one of those people saying the cloud isn’t anything new – it is, and some of these subtle differences can have a big impact – but we can definitely scope and manage the data security issues. And when we can’t achieve our desired level of security… well, that’s time to figure out what our risk tolerance is.

Let’s take two specific examples:

Protecting Data on Amazon S3 – Amazon S3 is one of the leading IaaS services for stored data, but it includes only minimal security controls compared to an internal storage repository. Access controls (which may not integrate with your internal access controls) and transit encryption (SSL) are available, but data is not encrypted in storage and may be accessible to Amazon staff or anyone who compromises your Amazon credentials. One option, which we’ve talked about here before, is Virtual Private Storage. You encrypt your data before sending it off to Amazon S3, giving you absolute control over keys and ACLs. You maintain complete control while still retaining the benefits of cloud-based storage. Many cloud backup solutions use this method.

Protecting Data at a SaaS Provider – I’d be more specific and list a SaaS provider, but I can’t remember which ones follow this architecture. With SaaS we have less control and are basically limited to the security controls built into the SaaS offering. That isn’t necessarily bad – the SaaS provider might be far more secure than you are – but not all SaaS offerings are created equal. To secure SaaS data you need to rely more on your contracts and an understanding of how your provider manages your data.

One architectural option for your SaaS provider is to protect your data with individual client keys managed outside the application (this is actually a useful internal data security architectural choice). It’s application-level encryption with external key management. All sensitive client data is encrypted in the SaaS provider’s database. Keys are managed in a dedicated appliance/service, and provided temporally to the application based on user credentials. Ideally the SaaS prover’s admins are properly segregated – where no single admin has database, key management, and application credentials. Since this potentially complicates support, it might be restricted to only the most sensitive data. (All your information might still be encrypted, but for support purposes could be accessible to the approved administrators/support staff). The SaaS provider then also logs all access by internal and external users.

This is only one option, but your SaaS provider should be able to document their internal data security, and even provide you with external audit reports.

As you can see, just because you are in the cloud doesn’t mean you completely give up any chance of data security. It’s all about understanding security boundaries, control options, technology, and process controls.

In future posts we’ll start walking through the Data Security Lifecycle and matching specific issues and control options in each phase against the SPI (SaaS, PaaS, IaaS) cloud models.