Securosis

Research

McAfee: A (Secure) Chip on Intel’s Block

Ah, the best laid plans. I had my task list all planned out for today and was diving in when my pal Adrian pinged me in our internal chat room about Intel buying McAfee for $7.68 billion. Crap, evidently my alarm didn’t go off and I’m stuck in some Hunter S. Thompson surreal situation where security and chips and clean rooms and men in bunny suits are all around me. But apparently I’m not dreaming. As the press release says, “Inside Intel, the company has elevated the priority of security to be on par with its strategic focus areas in energy-efficient performance and Internet connectivity.” Listen, I’ll be the first to say I’m not that smart, certainly not smart enough to gamble $7.68 billion of my investors’ money on what looks like a square peg in a round hole. But let’s not jump to conclusions, OK? First things first: Dave DeWalt and his management team have created a tremendous amount of value for McAfee shareholders over the last five years. When DeWalt came in McAfee was reeling from a stock option scandal, poor execution, and a weak strategy. And now they’ve pulled off the biggest coup of them all, selling Intel a new pillar that it’s not clear they need for a 60% premium. That’s one expensive pillar. Let’s take a step back. McAfee was the largest stand-alone security play out there. They had pretty much all the pieces of the puzzle, had invested a significant amount in research, and seemed to have a defensible strategy moving forward. Sure, it seemed their business was leveling off and DeWalt had already picked the low hanging fruit. But why would they sell now, and why to Intel? Yeah, I’m scratching my head too. If we go back to the press release, Intel CEO Paul Otellini explains a bit, “In the past, energy-efficient performance and connectivity have defined computing requirements. Looking forward, security will join those as a third pillar of what people demand from all computing experiences.” So basically they believe that security is critical to any and every computing experience. You know, I actually believe that. We’ve been saying for a long time that security isn’t really a business, it’s something that has to be woven into the fabric of everything in IT and computing. Obviously Intel has the breadth and balance sheet to make that happen, starting from the chips and moving up. But does McAfee have the goods to get Intel there? That’s where I’m coming up short. AV is not something that really works any more. So how do you build that into a chip, and what does it get you? I know McAfee does a lot more than just AV, but when you think about silicon it’s got to be about detecting something bad and doing it quickly and pervasively. A lot of the future is in cloud-based security intelligence (things like reputation and the like), and I guess that would be a play with Intel’s Connectivity business if they build reputation checking into the chipsets. Maybe. I guess McAfee has also been working on embedded solutions (especially for mobile), but that stuff is a long way off. And at a 60% premium, a long way off is the wrong answer. For a go-to-market model and strategy there is very little synergy. Intel doesn’t sell much direct to consumers or businesses, so it’s not like they can just pump McAfee products into their existing channels and justify a 60% premium. That’s why I have a hard time with this deal. This is about stuff that will (maybe) happen in 7-10 years. You don’t make strategic decisions based purely on what Wall Street wants – you need to be able to sell the story to everyone – especially investors. I don’t get it. On the conference call they are flapping their lips about consumers and mobile devices and how Intel has done software deals before (yeah, Wind River is a household name for consumers and small business). Their most relevant software deal was LANDesk. Intel bought them with pomp and circumstances during their last round of diversification, and it was a train wreck. They had no path to market and struggled until they spun it out a while back. It’s not clear to me how this is different, especially when a lot of the stuff relative to security within silicon could have been done with partnerships and smaller tuck-in acquisitions. Mostly their position is that we need tightly integrated hardware and software, and that McAfee gives Intel the opportunity to sell security software every time they sell silicon. Yeah, the PC makers don’t have any options to sell security software now, do they? In our internal discussion, Rich raised a number of issues with cloud computing, where trusted boot and trusted hardware are critical to the integrity of the entire architecture. And he also wrote a companion post to expand on those thoughts. We get to the same place for different reasons. But I still think Intel could have made a less audacious move (actually a number of them) that entailed far less risk than buying McAfee. Tactically, what does this mean for the industry? Well, clearly HP and IBM are the losers here. We do believe security is intrinsic to big IT, so HP & IBM need broader security strategies and capabilities. McAfee was a logical play for either to drive a broad security platform through a global, huge, highly trusted distribution channel (that already sells to the same customers, unlike Intel’s). We’ve all been hearing rumors about McAfee getting acquired for a while, so I’m sure both IBM and HP took long hard looks at McAfee. But they probably couldn’t justify a 60% premium. McAfee customers are fine – for the time being. McAfee will run standalone for the foreseeable future, though you have to wonder about McAfee’s ability to be as acquisitive and nimble as they’ve been. But there is always a focus issue during integration, and there will be the inevitable brain drain.

Share:
Read Post

Another Take on McAfee/Intel

A few moments ago Mike posted his take on the McAfee/Intel acquisition, and for the most part I agree with him. “For the most part” is my nice way of saying I think Mike nailed the surface but missed some of the depths. Despite what they try to teach you in business school (not that I went to one), acquisitions, even among Very Big Companies, don’t always make sense. Often they are as much about emotion and groupthink as logic. Looking at Intel and McAfee I can see a way this deal makes sense, but I see some obstacles to making this work, and suspect they will materially reduce the value Intel can realize from this acquisition. Intel wants to acquire McAfee for three primary reasons: The name: Yes, they could have bought some dinky startup or even a mid-sized firm for a fraction of what they paid for McAfee, but no one would know who they were. Within the security world there are a handful or two of household names; but when you span government, business, and consumers the only names are the guys that sell the most cardboard boxes at Costco and Wal-Mart: Synamtec and McAfee. If they want to market themselves as having a secure platform to the widest audience possible, only those two names bring instant recognition and trust. It doesn’t even matter what the product does. Trust me, RSA wouldn’t have gotten nearly the valuation they did in the EMC deal if it weren’t for the brand name and its penetration among enterprise buyers. And keep in mind that the US federal government basically only runs McAfee and Symantec on endpoints… which is, I suspect, another important factor. If you want to break into the soda game and have the cash, you buy Coke or Pepsi – not Shasta. Virtualization and cloud computing: There are some very significant long term issues with assuring the security of the hardware/software interface in cloud computing. Q: How can you secure and monitor a hypervisor with other software running on the same hardware? A: You can’t. How do you know your VM is even booting within a trusted environment? Intel has been working on these problems for years and announced partnerships years ago with McAfee, Symantec, and other security vendors. Now Intel can sell their chips and boards with a McAfee logo on them – but customers were always going to get the tools, so it’s not clear the deal really provides value here. Mobile computing: Meaning mobile phones, not laptops. There are billions more of these devices in the world than general purpose computers, and opportunities to embed more security into the platforms. Now here’s why I don’t think Intel will ever see the full value they hope for: Symantec, EMC/RSA, and other security vendors will fight this tooth and nail. They need assurances that they will have the same access to platforms from the biggest chipmaker on the planet. A lot of tech lawyers are about to get new BMWs. Maybe even a Tesla or two in eco-conscious states. If they have to keep the platform open to competitors (and they will), then bundling is limited and will be closely monitored by the competition and governments – this isn’t only a U.S. issue. On the mobile side, as Andrew Jaquith explained so well, Apple/RIM/Microsoft control the platform and the security, not chipmakers. McAfee will still be the third party on those platforms, selling software, but consumers won’t be looking for the little logo on the phone if they either think it’s secure, it comes with a yellow logo, or they know they can install whatever they want later. There’s one final angle I’m not as sure about – systems management. Maybe Intel really does want to get into the software game and increase revenue. Certainly McAfee E-Policy Orchestrator is capable of growing past security and into general management. The “green PC” language in their release and call hints in that direction, but I’m just not sure how much of a factor it is. The major value in this deal is that Intel just branded themselves a security company across all market segments – consumer, government, and corporate. But in terms of increasing sales or grabbing full control over platform security (which would enable them to charge a premium), I don’t think this will work out. The good news is that while I don’t think Intell will see the returns they want, I also don’t think this will hurt customers. Much of the integration was in process already (as it is with other McAfee competitors), and McAfee will probably otherwise run independently. Unlike a small vendor, they are big enough and differentiated enough from the rest of Intel to survive. Probably. Share:

Share:
Read Post

Data Encryption for PCI 101: Introduction

Rich and I are kicking off a short series called “Data Encryption 101: A Pragmatic Approach for PCI Compliance”. As the name implies, our goal is to provide actionable advice for PCI compliance as it relates to encrypted data storage. We write a lot about PCI because we get plenty of end-user questions on the subject. Every PCI research project we produce talks specifically about the need to protect credit cards, but we have never before dug into the details of how. This really hit home during the tokenization series – even when you are trying to get rid of credit cards you still need to encrypt data in the token server, but choosing the best way to employ encryption is varies depending upon the users environment and application processing needs. It’s not like we can point a merchant to the PCI specification and say “Do that”. There is no practical advice in the Data Security Standard for protecting PAN data, and I think some of the acceptable ‘approaches’ are, honestly, a waste of time and effort. PCI says you need to render stored Primary Account Number (at a minimum) unreadable. That’s clear. The specification points to a number of methods they feel are appropriate (hashing, encryption, truncation), emphasizes the need for “strong” cryptography, and raises some operational issues with key storage and disk/database encryption. And that’s where things fall apart – the technology, deployment models, and supporting systems offer hundreds of variations and many of them are inappropriate in any situation. These nuggets of information are little more than reference points in a game of “connect the dots”, without an orderly sequence or a good understanding of the picture you are supposedly drawing. Here are some specific ambiguities and misdirections in the PCI standard: Hashing: Hashing is not encryption, and not a great way to protect credit cards. Sure, hashed values can be fairly secure and they are allowed by the PCI DSS specification, but they don’t solve a business problem. Why would you hash rather than encrypting? If you need access to credit card data badly enough to store it in the first place hashing us a non-starter because you cannot get the original data back. If you don’t need the original numbers at all, replace them with encrypted or random numbers. If you are going to the trouble of storing the credit card number you will want encryption – it is reversible, resistant to dictionary attacks, and more secure. Strong Cryptography: Have you ever seen a vendor advertise weak cryptography? I didn’t think so. Vendors tout strong crypto, and the PCI specification mentions it for a reason: once upon a time there was an issue with vendors developing “custom” obfuscation techniques that were easily broken, or totally screwing up the implementation of otherwise effective ciphers. This problem is exceptionally rare today. The PCI mention of strong cryptography is simply a red herring. Vendors will happily discuss their sooper-strong crypto and how they provide compliant algorithms, but this is a distraction from the selection process. You should not be spending more than a few minutes worrying about the relative strength of encryption ciphers, or the merits of 128 vs. 256 bit keys. PCI provides a list of approved ciphers, and the commercial vendors have done a good job with their implementations. The details are irrelevant to end users. Disk Encryption: The PCI specification mentions disk encryption in a matter-of-fact way that implies it’s an acceptable implementations for concealing stored PAN data. There are several forms of “disk encryption”, just as there are several forms of “database encryption”. Some variants work well for securing media, but offer no meaningful increase in data security for PCI purposes. Encrypted SAN/NAS is one example of disk encryption that is wholly unsuitable, as requests from the OS and applications automatically receive unencrypted data. Sure, the data is protected in case someone attempts to cart off your storage array, but that’s not what you need to protect against. Key Management: There is a lot of confusion around key management; how do you verify keys are properly stored? What does it mean that decryption keys should not be tied to accounts, especially since keys are commonly embedded within applications? What are the tradeoffs of central key management? These are principal business concerns that get no coverage in the specification, but critical to the selection process for security and cost containment. Most compliance regulations must balance between description vs. prescription for controls, in order to tell people clearly what they need to do without telling them how it must be done. Standards should describe what needs to be accomplished without being so specific that they forbid effective technologies and methods. The PCI Data Security Standard is not particularly successful at striking this balance, so our goal for this series is to cut through some of these confusing issues, making specific recommendations for what technologies are effective and how you should approach the decision-making process. Unlike most of our Understanding and Selecting series on security topics, this will be a short series of posts, very focused on meeting PCI’s data storage requirement. In our next post we will create a strategic outline for securing stored payment data and discuss suitable encryption tools that address common customer use cases. We’ll follow up with a discussion of key management and supporting infrastructure considerations, then finally a list of criteria to consider when evaluating and purchasing data encryption solutions.   Share:

Share:
Read Post

Liquidmatrix + Securosis: Dave Lewis and James Arlen Join Securosis as Contributing Analysts

In our ongoing quest for world domination, we are excited to announce our formal partnership with our friends over at Liquidmatrix. Beginning immediately Dave Lewis (@gattaca) and James Arlen (@myrcurial) are joining the staff as Contributing Analysts. Dave and James will be contributing to the Securosis blog and taking part in some of our research and analysis projects. If you want to ask them questions or just say “Hi,” aside from their normal emails you can now reach them at dlewis and jarlen at securosis.com. Within the next few days we will also start providing the Liquidmatrix Security Briefing through the Securosis RSS feed and email distribution list (for those of you on our Daily Digest list). We will just be providing the Briefing – Dave, James, and their other contributors will continue to blog on other issues at [the Liquidmatrix site(http://www.liquidmatrix.org/blog/). But you’ll also start seeing new content from them here at Securosis as they participate in our research projects. We’re biased but we think this is a great partnership. Aside from gaining two more really smart guys with a lot of security experience, this also increases our ability to keep all of you up to date on the latest security news. I’d call it a “win-win”, but I think they’ll figure out soon enough that Securosis is the one gaining the most here. (Don’t worry, per SOP we locked them into oppressive ironclad contracts). Dave and James now join David Mortman and Gunnar Peterson in our Contributing Analyst program. Which means Mike, Adrian, and I are officially outnumbered and a bit nervous.   Share:

Share:
Read Post

Totally Transparent Research is the embodiment of how we work at Securosis. It’s our core operating philosophy, our research policy, and a specific process. We initially developed it to help maintain objectivity while producing licensed research, but its benefits extend to all aspects of our business.

Going beyond Open Source Research, and a far cry from the traditional syndicated research model, we think it’s the best way to produce independent, objective, quality research.

Here’s how it works:

  • Content is developed ‘live’ on the blog. Primary research is generally released in pieces, as a series of posts, so we can digest and integrate feedback, making the end results much stronger than traditional “ivory tower” research.
  • Comments are enabled for posts. All comments are kept except for spam, personal insults of a clearly inflammatory nature, and completely off-topic content that distracts from the discussion. We welcome comments critical of the work, even if somewhat insulting to the authors. Really.
  • Anyone can comment, and no registration is required. Vendors or consultants with a relevant product or offering must properly identify themselves. While their comments won’t be deleted, the writer/moderator will “call out”, identify, and possibly ridicule vendors who fail to do so.
  • Vendors considering licensing the content are welcome to provide feedback, but it must be posted in the comments - just like everyone else. There is no back channel influence on the research findings or posts.
    Analysts must reply to comments and defend the research position, or agree to modify the content.
  • At the end of the post series, the analyst compiles the posts into a paper, presentation, or other delivery vehicle. Public comments/input factors into the research, where appropriate.
  • If the research is distributed as a paper, significant commenters/contributors are acknowledged in the opening of the report. If they did not post their real names, handles used for comments are listed. Commenters do not retain any rights to the report, but their contributions will be recognized.
  • All primary research will be released under a Creative Commons license. The current license is Non-Commercial, Attribution. The analyst, at their discretion, may add a Derivative Works or Share Alike condition.
  • Securosis primary research does not discuss specific vendors or specific products/offerings, unless used to provide context, contrast or to make a point (which is very very rare).
    Although quotes from published primary research (and published primary research only) may be used in press releases, said quotes may never mention a specific vendor, even if the vendor is mentioned in the source report. Securosis must approve any quote to appear in any vendor marketing collateral.
  • Final primary research will be posted on the blog with open comments.
  • Research will be updated periodically to reflect market realities, based on the discretion of the primary analyst. Updated research will be dated and given a version number.
    For research that cannot be developed using this model, such as complex principles or models that are unsuited for a series of blog posts, the content will be chunked up and posted at or before release of the paper to solicit public feedback, and provide an open venue for comments and criticisms.
  • In rare cases Securosis may write papers outside of the primary research agenda, but only if the end result can be non-biased and valuable to the user community to supplement industry-wide efforts or advances. A “Radically Transparent Research” process will be followed in developing these papers, where absolutely all materials are public at all stages of development, including communications (email, call notes).
    Only the free primary research released on our site can be licensed. We will not accept licensing fees on research we charge users to access.
  • All licensed research will be clearly labeled with the licensees. No licensed research will be released without indicating the sources of licensing fees. Again, there will be no back channel influence. We’re open and transparent about our revenue sources.

In essence, we develop all of our research out in the open, and not only seek public comments, but keep those comments indefinitely as a record of the research creation process. If you believe we are biased or not doing our homework, you can call us out on it and it will be there in the record. Our philosophy involves cracking open the research process, and using our readers to eliminate bias and enhance the quality of the work.

On the back end, here’s how we handle this approach with licensees:

  • Licensees may propose paper topics. The topic may be accepted if it is consistent with the Securosis research agenda and goals, but only if it can be covered without bias and will be valuable to the end user community.
  • Analysts produce research according to their own research agendas, and may offer licensing under the same objectivity requirements.
  • The potential licensee will be provided an outline of our research positions and the potential research product so they can determine if it is likely to meet their objectives.
  • Once the licensee agrees, development of the primary research content begins, following the Totally Transparent Research process as outlined above. At this point, there is no money exchanged.
  • Upon completion of the paper, the licensee will receive a release candidate to determine whether the final result still meets their needs.
  • If the content does not meet their needs, the licensee is not required to pay, and the research will be released without licensing or with alternate licensees.
  • Licensees may host and reuse the content for the length of the license (typically one year). This includes placing the content behind a registration process, posting on white paper networks, or translation into other languages. The research will always be hosted at Securosis for free without registration.

Here is the language we currently place in our research project agreements:

Content will be created independently of LICENSEE with no obligations for payment. Once content is complete, LICENSEE will have a 3 day review period to determine if the content meets corporate objectives. If the content is unsuitable, LICENSEE will not be obligated for any payment and Securosis is free to distribute the whitepaper without branding or with alternate licensees, and will not complete any associated webcasts for the declining LICENSEE. Content licensing, webcasts and payment are contingent on the content being acceptable to LICENSEE. This maintains objectivity while limiting the risk to LICENSEE. Securosis maintains all rights to the content and to include Securosis branding in addition to any licensee branding.

Even this process itself is open to criticism. If you have questions or comments, you can email us or comment on the blog.