Securosis

Research

Pragmatic Security for Cloud and Hybrid Networks: Design Patterns

This is the fourth post in a new series I’m posting for public feedback, licensed by Algosec. Well, that is if they like it – we are sticking to our Totally Transparent Research policy. I’m also live-writing the content on GitHub if you want to provide any feedback or suggestions. Click here for the first post in the series, [here for post two](https://securosis.com/blog/pragmatic-security-for-cloud-and-hybrid-networks-cloud-networking-101, post 3, post 4. To finish off this research it’s time to show what some of this looks like. Here are some practical design patterns based on projects we have worked on. The examples are specific to Amazon Web Services and Microsoft Azure, rather than generic templates. Generic patterns are less detailed and harder to explain, and we would rather you understand what these look like in the real world. Basic Public Network on Microsoft Azure This is a simplified example of a public network on Azure. All the components run on Azure, with nothing in the enterprise data center, and no VPN connections. Management of all assets is over the Internet. We can’t show all the pieces and configuration settings in this diagram, so here are some specifics:   The Internet Gateway is set in Azure by default (you don’t need to do anything). Azure also sets up default service endpoints for the management ports to manage your instances. These connections are direct to each instance and don’t run through the load balancer. They will (should) be limited to only your current IP address, and the ports are closed to the rest of the world. In this example we have a single public facing subnet. Each instance gets a public IP address and domain name, but you can’t access anything that isn’t opened up with a defined service endpoint. Think of the endpoint as port forwarding, which it pretty much is. The service endpoint can point to the load balancer, which in turn is tied to the auto scale group. You set rules on instance health, performance, and availability; the load balancer and auto scale group provision and deprovision servers as needed, and handle routing. The IP addresses of the instances change as these updates take place. Network Security Groups (NSGs) restrict access to each instance. In Azure you can also apply them to subnets. In this case we would apply them on a per-server basis. Traffic would be restricted to whatever services are being provided by the application, and would deny traffic between instances on the same subnet. Azure allows such internal traffic by default, unlike Amazon. NSGs can also restrict traffic to the instances, locking it down to only from the load balancer and thus disabling direct Internet access. Ideally you never need to log into the servers because they are in an auto scale group, so you can also disable all the management/administration ports. There is more, but this pattern produces a hardened server, with no administrative traffic, protected with both Azure’s default protections and Network Security Groups. Note that on Azure you are often much better off using their PaaS offerings such as web servers, instead of manually building infrastructure like this. Basic Private Network on Amazon Web Services Amazon works a bit differently than Azure (okay – much differently). This example is a Virtual Private Cloud (VPC, their name for a virtual network) that is completely private, without any Internet routing, connected to a data center through a VPN connection.   This shows a class B network with two smaller subnets. In AWS you would place each subnet in a different Availability Zone (what we called a ‘zone’) for resilience in case one goes down – they are separate physical data centers. You configure the VPN gateway through the AWS console or API, and then configure the client side of the VPN connection on your own hardware. Amazon maintains the VPN gateway in AWS; you don’t directly touch or maintain it, but you do need to maintain everything on your side of the connection (and it needs to be a hardware VPN). You adjust the routing table on your internal network to send all traffic for the 10.0.0.0/16 network over the VPN connection to AWS. This is why it’s called a ‘virtual’ private cloud. Instances can’t see the Internet, but you have that gateway that’s Internet accessible. You also need to set your virtual routing table in AWS to send Internet traffic back through your corporate network if you want any of your assets to access the Internet for things like software updates. Sometimes you do, sometimes you don’t – we don’t judge. By default instances are protected with a Security Group that denies all inbound traffic and allows all outbound traffic. Unlike in Azure, instances on the same subnet can’t talk to each other. You cannot connect to them through the corporate network until you open them up. AWS Security Groups offer allow rules only. You cannot explicitly deny traffic – only open up allowed traffic. In Azure you create Service Endpoints to explicitly route traffic, then use network security groups to allow or deny on top of that (within the virtual network). AWS uses security groups for both functions – opening a security group allows traffic through the private IP (or public IP if it is public facing). Our example uses no ACLs but you could put an ACL in place to block the two subnets from talking to each other. ACLs in AWS are there by default, but allow all traffic. An ACL in AWS is not stateful, so you need to create rules for all bidrectional traffic. ACLs in AWS work better as a deny mechanism. A public network on AWS looks relatively similar to our Azure sample (which we designed to look similar). The key differences are how security groups and service endpoints function. Hybrid Cloud on Azure This builds on our previous examples. In this case the web servers and app servers are separated, with app servers on a private subnet. We already explained the components in our other examples, so there is only a little to add:   The key security control here is a Network Security Group

Share:
Read Post

Totally Transparent Research is the embodiment of how we work at Securosis. It’s our core operating philosophy, our research policy, and a specific process. We initially developed it to help maintain objectivity while producing licensed research, but its benefits extend to all aspects of our business.

Going beyond Open Source Research, and a far cry from the traditional syndicated research model, we think it’s the best way to produce independent, objective, quality research.

Here’s how it works:

  • Content is developed ‘live’ on the blog. Primary research is generally released in pieces, as a series of posts, so we can digest and integrate feedback, making the end results much stronger than traditional “ivory tower” research.
  • Comments are enabled for posts. All comments are kept except for spam, personal insults of a clearly inflammatory nature, and completely off-topic content that distracts from the discussion. We welcome comments critical of the work, even if somewhat insulting to the authors. Really.
  • Anyone can comment, and no registration is required. Vendors or consultants with a relevant product or offering must properly identify themselves. While their comments won’t be deleted, the writer/moderator will “call out”, identify, and possibly ridicule vendors who fail to do so.
  • Vendors considering licensing the content are welcome to provide feedback, but it must be posted in the comments - just like everyone else. There is no back channel influence on the research findings or posts.
    Analysts must reply to comments and defend the research position, or agree to modify the content.
  • At the end of the post series, the analyst compiles the posts into a paper, presentation, or other delivery vehicle. Public comments/input factors into the research, where appropriate.
  • If the research is distributed as a paper, significant commenters/contributors are acknowledged in the opening of the report. If they did not post their real names, handles used for comments are listed. Commenters do not retain any rights to the report, but their contributions will be recognized.
  • All primary research will be released under a Creative Commons license. The current license is Non-Commercial, Attribution. The analyst, at their discretion, may add a Derivative Works or Share Alike condition.
  • Securosis primary research does not discuss specific vendors or specific products/offerings, unless used to provide context, contrast or to make a point (which is very very rare).
    Although quotes from published primary research (and published primary research only) may be used in press releases, said quotes may never mention a specific vendor, even if the vendor is mentioned in the source report. Securosis must approve any quote to appear in any vendor marketing collateral.
  • Final primary research will be posted on the blog with open comments.
  • Research will be updated periodically to reflect market realities, based on the discretion of the primary analyst. Updated research will be dated and given a version number.
    For research that cannot be developed using this model, such as complex principles or models that are unsuited for a series of blog posts, the content will be chunked up and posted at or before release of the paper to solicit public feedback, and provide an open venue for comments and criticisms.
  • In rare cases Securosis may write papers outside of the primary research agenda, but only if the end result can be non-biased and valuable to the user community to supplement industry-wide efforts or advances. A “Radically Transparent Research” process will be followed in developing these papers, where absolutely all materials are public at all stages of development, including communications (email, call notes).
    Only the free primary research released on our site can be licensed. We will not accept licensing fees on research we charge users to access.
  • All licensed research will be clearly labeled with the licensees. No licensed research will be released without indicating the sources of licensing fees. Again, there will be no back channel influence. We’re open and transparent about our revenue sources.

In essence, we develop all of our research out in the open, and not only seek public comments, but keep those comments indefinitely as a record of the research creation process. If you believe we are biased or not doing our homework, you can call us out on it and it will be there in the record. Our philosophy involves cracking open the research process, and using our readers to eliminate bias and enhance the quality of the work.

On the back end, here’s how we handle this approach with licensees:

  • Licensees may propose paper topics. The topic may be accepted if it is consistent with the Securosis research agenda and goals, but only if it can be covered without bias and will be valuable to the end user community.
  • Analysts produce research according to their own research agendas, and may offer licensing under the same objectivity requirements.
  • The potential licensee will be provided an outline of our research positions and the potential research product so they can determine if it is likely to meet their objectives.
  • Once the licensee agrees, development of the primary research content begins, following the Totally Transparent Research process as outlined above. At this point, there is no money exchanged.
  • Upon completion of the paper, the licensee will receive a release candidate to determine whether the final result still meets their needs.
  • If the content does not meet their needs, the licensee is not required to pay, and the research will be released without licensing or with alternate licensees.
  • Licensees may host and reuse the content for the length of the license (typically one year). This includes placing the content behind a registration process, posting on white paper networks, or translation into other languages. The research will always be hosted at Securosis for free without registration.

Here is the language we currently place in our research project agreements:

Content will be created independently of LICENSEE with no obligations for payment. Once content is complete, LICENSEE will have a 3 day review period to determine if the content meets corporate objectives. If the content is unsuitable, LICENSEE will not be obligated for any payment and Securosis is free to distribute the whitepaper without branding or with alternate licensees, and will not complete any associated webcasts for the declining LICENSEE. Content licensing, webcasts and payment are contingent on the content being acceptable to LICENSEE. This maintains objectivity while limiting the risk to LICENSEE. Securosis maintains all rights to the content and to include Securosis branding in addition to any licensee branding.

Even this process itself is open to criticism. If you have questions or comments, you can email us or comment on the blog.