We’ve covered a lot of ground over the past few posts on endpoint DLP. Our last post finished our discussion of best practices and I’d like to close with a few short fictional use cases based on real deployments.

Endpoint Discovery and File Monitoring for PCI Compliance Support

BuyMore is a large regional home goods and grocery retailer in the southwest United States. In a previous PCI audit, credit card information was discovered on some employee laptops mixed in with loyalty program data and customer demographics. An expensive, manual audit and cleansing was performed within business units handling this content. To avoid similar issues in the future, BuyMore purchased an endpoint DLP solution with discovery and real time file monitoring support.

BuyMore has a highly distributed infrastructure due to multiple acquisitions and independently managed retail outlets (approximately 150 locations). During initial testing it was determined that database fingerprinting would be the best content analysis technique for the corporate headquarters, regional offices, and retail outlet servers, while rules-based analysis is the best fit for the systems used by store managers. The eventual goal is to transition all locations to database fingerprinting, once a database consolidation and cleansing program is complete.

During Phase 1, endpoint agents were deployed to corporate headquarters laptops for the customer relations and marketing team. An initial content discovery scan was performed, with policy violations reported to managers and the affected employees. For violations, a second scan was performed 30 days later to ensure that the data was removed. In Phase 2, the endpoint agents were switched into real time monitoring mode when the central management server was available (to support the database fingerprinting policy). Systems that leave the corporate network are then scanned monthly when the connect back in, with the tool tuned to only scan files modified since the last scan. All systems are scanned on a rotating quarterly basis, and reports generated and provided to the auditors.

For Phase 3, agents were expanded to the rest of the corporate headquarters team over the course of 6 months, on a business unit by business unit basis.

For the final phase, agents were deployed to retail outlets on a store by store basis. Due to the lower quality of database data in these locations, a rules-based policy for credit cards was used. Policy violations automatically generate an email to the store manager, and are reported to the central policy server for followup by a compliance manager.

At the end of 18 months, corporate headquarters and 78% or retail outlets were covered. BuyMore is planning on adding USB blocking in their next year of deployment, and already completed deployment of network filtering and content discovery for storage repositories.

Endpoint Enforcement for Intellectual Property Protection

EngineeringCo is a small contract engineering firm with 500 employees in the high tech manufacturing industry. They specialize in designing highly competitive mobile phones for major manufacturers. In 2006 they suffered a major theft of their intellectual property when a contractor transferred product description documents and CAD diagrams for a new design onto a USB device and sold them to a competitor in Asia, which beat their client to market by 3 months.

EngineeringCo purchased a full DLP suite in 2007 and completed deployment of partial document matching policies on the network, followed by network-scanning-based content discovery policies for corporate desktops. After 6 months they added network blocking for email, http, and ftp, and violations are at an acceptable level. In the first half of 2008 they began deployment of endpoint agents for engineering laptops (approximately 150 systems).

Because the information involved is so valuable, EngineeringCo decided to deploy full partial document matching policies on their endpoints. Testing determined performance is acceptable on current systems if the analysis signatures are limited to 500 MB in total size. To accommodate this limit, a special directory was established for each major project where managers drop key documents, rather than all project documents (which are still scanned and protected at the network). Engineers can work with documents, but the endpoint agent blocks network transmission except for internal email and file sharing, and any portable storage. The network gateway prevents engineers from emailing documents externally using their corporate email, but since it’s a gateway solution internal emails aren’t scanned.

Engineering teams are typically 5-25 individuals, and agents were deployed on a team by team basis, taking approximately 6 months total.

These are, of course, fictional best practices examples, but they’re drawn from discussions with dozens of DLP clients. The key takeaways are:

  1. Start small, with a few simple policies and a limited footprint.
  2. Grow deployments as you reduce incidents/violations to keep your incident queue under control and educate employees.
  3. Start with monitoring/alerting and employee education, then move on to enforcement.
  4. This is risk reduction, not risk elimination. Use the tool to identify and reduce exposure but don’t expect it to magically solve all your data security problems.
  5. When you add new policies, test first with a limited audience before rolling them out to the entire scope, even if you are already covering the entire enterprise with other policies.
Share: