As anyone reading this site knows, I have been spending a ton of time looking at practical approaches to cloud security. An area of particular interest is infrastructure encryption. The cloud is actually spurring a resurgence in interest in data encryption (well, that and the NSA, but I won’t go there).

This paper is the culmination of over 2 years of research, including hands-on testing. Encrypting object and volume storage is a very effective way of protecting data in both public and private clouds. I use it myself.

From the paper:

Infrastructure as a Service (IaaS) is often thought of as merely a more efficient (outsourced) version of traditional infrastructure. On the surface we still manage things that look like traditional virtualized networks, computers, and storage. We ‘boot’ computers (launch instances), assign IP addresses, and connect (virtual) hard drives. But while the presentation of IaaS resembles traditional infrastructure, the reality underneath is decidedly not business as usual.

For both public and private clouds, the architecture of the physical infrastructure that comprises the cloud – as well as the connectivity and abstraction components used to provide it – dramatically alter how we need to manage security. The cloud is not inherently more or less secure than traditional infrastructure, but it is very different.

Protecting data in the cloud is a top priority for most organizations as they adopt cloud computing. In some cases this is due to moving onto a public cloud, with the standard concerns any time you allow someone else to access or hold your data. But private clouds pose the same risks, even if they don’t trigger the same gut reaction as outsourcing.

This paper will dig into ways to protect data stored in and used with Infrastructure as a Service. There are a few options, but we will show why the answer almost always comes down to encryption in the end – with a few twists.

The permanent home of the paper is here , and you can download the PDF directly

We would like to thank SafeNet and Thales e-Security for licensing the content in this paper. Obviously we wouldn’t be able to do the research we do, or offer it to you without cost, without companies supporting our research.