Defending Against DDoS: Mitigations
Our past two posts discussed network-based Distributed Denial of Device (DDoS) attacks and the tactics used to magnify those attacks to unprecedented scale and volume. Now it’s time to wrap up this series with a discussion of defenses. To understand what you’re up against let’s take a small excerpt from our Defending Against Denial of Service Attacks paper. First the obvious: you cannot just throw bandwidth at the problem. Your adversaries likely have an unbounded number of bots at their disposal and are getting smarter at using shared virtual servers and cloud instances to magnify the amount at their disposal. So you can’t just hunker down and ride it out. They likely have a bigger cannon than you can handle. You need to figure out how to deal with a massive amount of traffic, and separate good traffic from bad while maintaining availability. Your first option is to leverage existing network/security products to address the issue. As we discussed in our introduction, that is not a good strategy because those devices aren’t built to withstand the volumes or tactics involved in a DDoS. Next, you could deploy a purpose-built device on your network to block DDoS traffic before it melts your networks. This is certainly an option, but if your inbound network pipes are saturated, an on-premise device cannot help much – applications will still be unavailable. Finally, you can front-end your networks with a service to scrub traffic before it reaches your network. But this approach is no panacea either – it takes time to move traffic to a scrubbing provider, and during that window you are effectively down. So the answer is likely a combination of these tactics, deployed in a complimentary fashion to give you the best chance to maintain availability. Do Nothing Before we dig into the different alternatives, we need to acknowledge one other choice: doing nothing. The fact is that many organizations have to go through an exercise after being hit by a DDoS attack, to determine what protections are needed. Given the investment required for any of the alternatives listed above, you have to weigh the cost of downtime against the cost of potentially stopping the attack. This is another security tradeoff. If you are a frequent or high-profile target then doing nothing isn’t an option. If you got hit with a random attack – which happens when attackers are testing new tactics and code – and you have no reason to believe you will be targeted again, you may be able to get away with doing nothing. Of course you could be wrong, in which case you will suffer more downtime. You need to both make sure all the relevant parties are aware of this choice, and manage expectations so they understand the risk you are accepting in case you do get attacked again. We will just say we don’t advocate this do-nothing approach, but we do understand that tough decision need to be made with scarce resources. Assuming you want to put some defenses in place to mitigate the impact of a DDoS, let’s work through the alternatives. DDoS Defense Devices These appliances are purpose-built to deal with DoS attacks, and include both optimized IPS-like rules to prevent floods and other network anomalies, and simple web application firewall capabilities to protect against application layer attacks. Additionally, they feature anti-DoS features such as session scalability and embedded IP reputation capabilities, in order to discard traffic from known bots without full inspection. To understand the role of IP reputation, let’s recall how email connection management devices enabled anti-spam gateways to scale up to handle spam floods. It is computationally expensive to fully inspect every inbound email, so immediately dumping messages from known bad senders focuses inspection on email that might be legitimate to keep mail flowing. The same concept applies here. Keep the latency inherent in checking a cloud-based reputation database in mind – you will want the device to aggressively cache bad IPs to avoid a lengthy cloud lookup for every incoming session. For kosher connections which pass the reputation test, these devices additionally enforce limits on inbound connections, govern the rate of application requests, control clients’ request rates, and manage the number of total connections allowed to hit the server or load balancer sitting behind it. Of course these limits must be defined incrementally to avoid shutting down legitimate traffic during peak usage. Speed is the name of the game for DDoS defense devices, so make sure yours have sufficient headroom to handle your network pipe. Over-provision to ensure they can handle bursts and keep up with the increasing bandwidth you are sure to bring in over time. CDN/Web Protection Services Another popular option is to front-end web applications with a content delivery network or web protection service. This tactic only protects the web applications you route through the CDN, but can scale to handle very large DDoS attacks in a cost-effective manner. Though if the attacker is targeting other address or ports on your network, you’re out of luck – they aren’t protected. DNS servers, for instance, aren’t protected. We find CDNs effective for handling network-based DDOS in smaller environments with a small external web presence. There are plenty of other benefits to a CDN, including caching and shielding your external IP addresses. But for stopping DDoS attacks a CDN is a limited answer. External Scrubbing The next level up the sophistication (and cost) scale is an external scrubbing center. These services allow you to redirect all your traffic through their network when you are attacked. The switch-over tends to be based on either a proprietary switching protocol (if your perimeter devices or DDoS Defense appliances support the carrier’s signaling protocol) or a BGP request. Once the determination has been made to move traffic to the scrubbing center, there will be a delay while the network converges, before you start receiving clean traffic through a tunnel from the scrubbing center. The biggest question with a scrubbing center is when to move the traffic. Do it too soon and your resources stay