Securosis

Research

Incite 12/21/2016: To Incite

In the process of wrapping up the year I realize the last Incite I wrote was in August. Damn. That’s a long respite. It’s in my todo list every Tuesday. And evidently I have dutifully rescheduled it for about 3 months now. I am one to analyze (and probably overanalyze) everything, so I need to figure out why I have resisted writing the Incite. I guess it makes sense to go back to 2007, when I started writing the Incite. My motivation was to build my first independent research business (Security Incite), and back then a newsletter was the way to do it. I was pretty diligent about writing almost every day – providing inflammatory commentary on security news, poking the bear whenever I could, and making a name for myself. I think that was modestly successful, and it really reflected who I was back then. Angry, blunt, cynical, and edgy. So the Incite persona fit and I communicated that through my blog, speaking gigs, and strategy work for years. During that initial period I also started adding some personal stories and funny anecdotes to lighten it up a bit. Mostly because I was getting bored – it’s not like security news is the most exciting thing to work on every day. But the feedback on my personal stories was great, so I kept doing it. So basically the Incite turned into my playground, where I could share pretty much anything going on with me. And I did. The good, bad, and ugliness of life. As I went through a period of turbulence and personal evolution (midlife transformation), I used the Incite as my journal. Only I know a lot of the underlying machinations that drove many of those posts, but the Incite allowed me to document my journey. For me. I got through the proverbial tunnel back in July of 2015. Obviously I’m still learning and growing (mostly by screwing things up), but I didn’t feel compelled to continue documenting my journey. I did learn a lot through the process, so I wanted to share my experiences and associated philosophies, since that was how I coped with my personal turmoil. I also hoped that my writing would help other folks in similar situations. But I don’t seem to have a lot of ground left to cover, and since I’ve moved forward in my personal life, I don’t want to keep digging into the past. Where does that leave me now? The reality is that the Incite persona no longer fits. I’ve been alluding to that for a while, and on reflection, it’s left me a little untethered and resistant to writing. My resistance comes from having to maintain a persona I no longer want. Grumpy Mike is an act. And I no longer want to play that role. When people you just meet tell you, “you’re not so mean,” it’s time to rehabilitate your image. But the Incite perpetuates that perception. When looking at a situation without an easy answer, my teacher Casey always counseled me to flip the perspective. Look at it from a different viewpoint and see if a solution appears. Since I seem to be triggered by the word ‘Incite’, let’s dig into that. It’s clear the idea of encouraging “violent or unlawful behavior” is the problem. But if I look at the synonyms, I see words that do reflect what I’m trying to do. Encourage, stimulate, excite, awaken, inspire, and trigger. I always wrote the Incite for me, but based on many many discussions and notes of support I’ve received, it has done many of these things for readers. And that makes me happy. Everything changes. I’m living, breathing proof of that. And it’s time to move forward. So I’m going to retire the Incite newsletter. That writing is an important release for me and I still like to share anecdotes, so I’ll continue doing that in some way, shape, or form. And I’m going to get better about doing 3-5 quick security news analyses each week as well, since we are kind of a security research firm. But it won’t stop there. I will be launching some new services early next year to develop the next generation of security leaders, so I’ll be integrating weekly video interviews and other personal development content into the mix as well. I know 2016 was hard for many people. From my perspective there were certainly surprises. Overall it was a good year for me and my family. I have a lot to celebrate and be thankful for. So I’ll spend my holiday season catching up on projects that dragged out (meaning I’ll be active on the blog) and pinching myself, just to make sure this is all real. –Mike Share:

Share:
Read Post

The NINTH Annual Disaster Recovery Breakfast: the More Things Change…

Big 9. Lucky 9. Or maybe not so lucky 9, because by the time you reach our annual respite from the wackiness of the RSA Conference, you may not be feeling very lucky. But if you flip your perspective, you’ll be in the home stretch, with only one more day of the conference before you can get the hell out of SF. We are happy to announce this year’s RSA Conference Disaster Recovery Breakfast. It’s hard to believe this is our ninth annual event. Everything seems to be in a state of flux and disruption. It’s a bit unsettling. But we’re happy to help you anchor at least for a few hours to grab some grub, drinks, and bacon. We remain grateful that so many of our friends, clients, and colleagues enjoy a couple hours away from the monstrosity that is now the RSAC. By Thursday we’re all disasters, so it’s very nice to have a place to kick back, have some conversations at a normal decibel level, and grab a nice breakfast. Or don’t talk to anyone at all and embrace your introvert – we get that too. With the continued support of Kulesa Faul, CHEN PR, and LaunchTech, you’ll have a great opportunity to say hello and thank them for helping support your habits. We are also very happy to welcome the CyberEdge Group as a partner. They are old friends, and we are ecstatic to have them participate. As always the breakfast will be Thursday morning (February 16) from 8-11 at Jillian’s in the Metreon. It’s an open door – come and leave as you want. We will have food, beverages, and assorted non-prescription recovery items to ease your day. Yes, the bar will be open – Mike gets the DTs if he doesn’t have his rise and shine Guinness. Please remember what the DR Breakfast is all about. No marketing, no spin, no t-shirts, and no flashing sunglasses – it’s just a quiet place to relax and have muddled conversations with folks you know, or maybe even go out on a limb and meet someone new. We are confident you will enjoy the DRB as much as we do. See you there. To help us estimate numbers, please RSVP to rsvp (at) securosis (dot) com. Share:

Share:
Read Post

The NINTH Annual Disaster Recovery Breakfast: the More Things Change…

Big 9. Lucky 9. Or maybe not so lucky 9, because by the time you reach our annual respite from the wackiness of the RSA Conference, you may not be feeling very lucky. But if you flip your perspective, you’ll be in the home stretch, with only one more day of the conference before you can get the hell out of SF. We are happy to announce this year’s RSA Conference Disaster Recovery Breakfast. It’s hard to believe this is our ninth annual event. Everything seems to be in a state of flux and disruption. It’s a bit unsettling. But we’re happy to help you anchor at least for a few hours to grab some grub, drinks, and bacon. We remain grateful that so many of our friends, clients, and colleagues enjoy a couple hours away from the monstrosity that is now the RSAC. By Thursday we’re all disasters, so it’s very nice to have a place to kick back, have some conversations at a normal decibel level, and grab a nice breakfast. Or don’t talk to anyone at all and embrace your introvert – we get that too. With the continued support of Kulesa Faul, CHEN PR, and LaunchTech, you’ll have a great opportunity to say hello and thank them for helping support your habits. We are also very happy to welcome the CyberEdge Group as a partner. They are old friends, and we are ecstatic to have them participate. As always the breakfast will be Thursday morning (February 16) from 8-11 at Jillian’s in the Metreon. It’s an open door – come and leave as you want. We will have food, beverages, and assorted non-prescription recovery items to ease your day. Yes, the bar will be open – Mike gets the DTs if he doesn’t have his rise and shine Guinness. Please remember what the DR Breakfast is all about. No marketing, no spin, no t-shirts, and no flashing sunglasses – it’s just a quiet place to relax and have muddled conversations with folks you know, or maybe even go out on a limb and meet someone new. We are confident you will enjoy the DRB as much as we do. See you there. To help us estimate numbers, please RSVP to rsvp (at) securosis (dot) com.   Share:

Share:
Read Post

Dynamic Security Assessment: The Limitations of Security Testing [New Series]

We have been fans of testing the security of infrastructure and applications as long as we can remember doing research. We have always known attackers are testing your environment all the time, so if you aren’t also self-assessing, inevitably you will be surprised by a successful attack. And like most security folks, we are no fans of surprises. Security testing and assessment has gone through a number of iterations. It started with simple vulnerability scanning. You could scan a device to understand its security posture, which patches were installed, and what remained vulnerable on the device. Vulnerability scanning remains a function at most organizations, driven mostly by a compliance requirement. As useful as it was to understand which devices and applications were vulnerable, a simple scan provides limited information. A vulnerability scanner cannot recognize that a vulnerable device is not exploitable due to other controls. So penetration testing emerged as a discipline to go beyond simple context-less vulnerability scanning, with humans trying to steal data. Pen tests are useful because they provide a sense of what is really at risk. But a penetration test is resource-intensive and expensive, especially if you use an external testing firm. To address that, we got automated pen testing tools, which use actual exploits in a semi-automatic fashion to simulate an attacker. Regardless of whether you use carbon-based (human) or silicon-based (computer) penetration testing, the results describe your environment at a single point in time. As soon as you blink, your environment will have changed, and your findings may no longer be valid. With the easy availability of penetration testing tools (notably the open source Metasploit), defending against a pen testing tool has emerged as the low bar of security. Our friend Josh Corman coined HDMoore’s Law, after the leader of the Metasploit project. Basically, if you cannot stop a primitive attacker using Metasploit (or another pen testing tool), you aren’t very good at security. The low bar isn’t high enough As we lead enterprises through developing security programs, we typically start with adversary analysis. It is important to understand what kinds of attackers will be targeting your organization and what they will be looking for. If you think your main threat is a 400-pound hacker in their parents’ basement, defending against an open source pen testing tool is probably sufficient. But do any of you honestly believe an unsophisticated attacker wielding a free penetration testing tool is all you have to worry about? Of course not. The key thing to understand about adversaries is simple: They don’t play by your rules. They will attack when you don’t expect it. They will take advantage of new attacks and exploits to evade detection. They will use tactics that look like a different adversary to raise a false flag. The adversary will do whatever it takes to achieve their mission. They can usually be patient, and will wait for you to screw something up. So the low bar of security represented by a pen testing tool is not good enough. Dynamic IT The increasing sophistication of adversaries is not your only challenge assessing your environment and understanding risk. Technology infrastructure seems to be undergoing the most significant set of changes we have ever seen, and this is dramatically complicating your ability to assess your environment. First, you have no idea where your data actually resides. Between SaaS applications, cloud storage services, and integrated business partner networks, the boundaries of traditional technology infrastructure have been extended unrecognizably, and you cannot assume your information is on a network you control. And if you don’t control the network it becomes much harder to test. The next major change underway is mobility. Between an increasingly disconnected workforce and an explosion of smart devices accessing critical information, you can no longer assume your employees will access applications and data from your networks. Realizing that authorized users needing legitimate access to data can be anywhere in the world, at any time, complicates assessment strategies as well. Finally, the push to public cloud-based infrastructure makes it unclear where your compute and storage are, as well. Many of the enterprises we work with are building cloud-native technology stacks using dozens of services across cloud providers. You don’t necessarily know where you will be attacked, either. To recap, you no longer know where your data is, where it will be accessed from, or where your computation will happen. And you are chartered to protect information in this dynamic IT environment, which means you need to assess the security of your environment as often as practical. Do you start to see the challenge of security assessment today, and how much more complicated it will be tomorrow? We Need Dynamic Security Assessment As discussed above, a penetration test represents a point in time snapshot of your environment, and is obsolete when complete, because the environment continues to change. The only way to keep pace with our dynamic IT environment is dynamic security assessment. The rest of this series will lay out what we mean by this, and how to implement it within your environment. As a little prelude to what you’ll learn, a dynamic security assessment tool includes: A highly sophisticated simulation engine, which can imitate typical attack patterns from sophisticated adversaries without putting production infrastructure in danger. An understanding of the network topology, to model possible lateral movement and isolate targeted information and assets. A security research team to leverage both proprietary and public threat intelligence, and to model the latest and greatest attacks to avoid unpleasant surprises. An effective security analytics function to figure out not just what is exploitable, but also how different workarounds and fixes will impact infrastructure security. We would like to thank SafeBreach as the initial potential licensee of this content. As you may remember, we research using our Totally Transparent Research methodology, which requires foresight on the part of our licensees. It enables us to post our papers in our Research Library without paywalls, registration, or any other blockage to you

Share:
Read Post

Endpoint Advanced Protection: Remediation and Deployment

Now that we have gotten through 80% of the Endpoint Advanced Protection lifecycle we can focus on remediation, and then how to start getting value from these new alternatives. Remediation Once you have detailed information from the investigation, what are the key decision points? As usual, to simplify we step back to the who, what, where, when, and how of the situation. And yes, any time we can make difficult feel seem like being back in grade school, we do. Who? The first question is about organizational dynamics. In this new age, when advanced attackers seem to be the norm, who should take lead in remediation? Without delving into religion or other politics, the considerations are really time and effectiveness. Traditionally IT Operations has tools and processes for broad changes, reimaging, or network-based workarounds. But for advanced malware or highly sensitive devices, or when law enforcement is involved, you might also want a small Security team which can remediate targeted devices. What? This question is less relevant because you are remediating a device, right? There may be some question of whether to prevent further outbreaks at the network level by blocking certain sites, applications, users, or all of the above, but ultimately we are talking about endpoints. Where? One of the challenges of dealing with endpoints is that you have no idea where a device will be at any point in time. So remote remediation is critical to any Endpoint Advanced Protection lifecycle. There are times you will need to reimage a machine, and that’s not really feasible remotely. But having a number of different options for remediation depending on device location can ensure minimal disruption to impacted employees. When? This is one of the most challenging decisions, because there are usually reasonable points for both sides of the argument: whether to remediate devices immediately, or whether to quarantine the device and observe the adversary a bit to gain intelligence. We generally favor quick and full eradication, which requires leveraging retrospection to figure all impacted devices (even if they aren’t currently participating in the attack) and cleaning devices as quickly as practical. But there are times which call for more measured remediation. How? This question is whether reimaging the device, or purging malware without reimaging, is the right approach. We favor reimaging because of the various ways attackers can remain persistent on a device. Even if you think a device has been cleaned… perhaps it really wasn’t. But with the more granular telemetry gathered by today’s endpoint investigation and forensics tools (think DVR playback), it is possible to reliably back out all the changes made, even within the OS innards. Ultimately the decision comes back to the risk posed by the device, as well as disruption to the employee. The ability to both clean and reimage is key to the remediation program. There is a broad range of available actions, so we advocate flexibility in remediation – as in just about everything. We don’t think there is any good one-size-fits-all approach any more; each remediation needs to be planned according to risk, attacker sophistication, and the skills and resources available between Security and Operations teams. Taking all that into account, you can choose the best approach. EPP Replacement? One of the most frustrating aspects of doing security is having to spend money on things you know don’t really work. Traditional endpoint protection suites fit into that category. Which begs the question: are Endpoint Advanced Protection products robust enough, effective enough, and broad enough to replace the EPP incumbents? To answer this question you must consider it from two different standpoints. First, the main reason you renew your anti-malware subscription each year is for that checkbox on a compliance checklist. So get a sense of whether your assessor/auditor would you a hard time if you come up with something that doesn’t use signatures to detect malicious activity. If they are likely to push back, maybe find a new assessor. Kidding aside, we haven’t seen much pushback lately, in light of the overwhelming evidence that Endpoint Advanced Detection/Prevention is markedly more effective at blocking current attacks. That said, it would be foolish to sign a purchase order to swap out protection on 10,000 devices without at least putting a call into your assessor and understanding whether there is precedent for them to accept a new style of agent. You will also need to look at your advanced endpoint offering for feature parity. Existing EPP offerings have been adding features (to maintain price points) for a decade. A lot of stuff you don’t need has been added, but maybe there is some you do use. Make sure replacing your EPP won’t leave a gap you will just need to fill with another product. Keep in mind that some EPP features are now bundled into operating systems. For example, full disk encryption is now available free as part of the operating system. In some cases you need to manage these OS-level capabilities separately, but that weighs against an expensive renewal which doesn’t effectively protect endpoints. Finally, consider price. Pretty much every enterprise tells us they want to reduce the number of security solutions they need. And supporting multiple agents and management consoles to protect endpoints doesn’t make much sense. In your drive to consolidate, play off aggressive new EAP vendors against desperate incumbents willing to perform unnatural acts to keep business. Migration Endpoint protection has been a zero-sum game for a while. Pretty much every company has some kind of endpoint protection strategy. So every deal that one vendor wins is lost by at least one competitor. Vendors make it very easy to migrate to their products by providing tools and services to facilitate the transition. Of course you need to verify what’s involved in moving wholesale to a new product, but the odds are it will be reasonably straightforward. Many new EAP tools are managed in the cloud. Typically that saves you from needing to install an onsite management server to test and

Share:
Read Post

Endpoint Advanced Protection: Detection and Response

As we discussed previously, despite all the cool innovation happening to effectively prevent compromises on endpoints, the fact remains that you cannot stop all attacks. That means detecting the compromise quickly and effectively, and then figuring out how far the attack has spread within your organization, continues to be critical. The fact is, until fairly recently endpoint detection and forensics was a black art. Commercial endpoint detection tools were basically black boxes, not really providing visibility to security professionals. And the complexity of purpose-built forensics tools put this capability beyond the reach of most security practitioners. But a new generation of endpoint detection and response (EDR) tools is now available, with much better visibility and more granular telemetry, along with a streamlined user experience to facilitate investigations – regardless of analyst capabilities. Of course it is better to have a more-skilled analyst than a less-skilled one, but given the hard truth of the security skills gap, our industry needs to provide better tools to make those less-skilled analysts more productive, faster. Now let’s dig into some key aspects of EDR. Telemetry/Data Capture In order to perfrom any kind of detection, you need telemetry from endpoints. This begs the question of how much to collect from each device, and how long to keep it. This borders on religion, but we remain firmly in the camp that more data is better than less. Some tools can provide a literal playback of activity on the endpoint, like a DVR recording of everything that happened. Others focus on log events and other metadata to understand endpoint activity. You need to decide whether to pull data from the kernel or from user space, or both. Again, we advocate for data, and there are definite advantages to pulling data from the kernel. Of course there are downsides as well, including potential device instability from kernel interference. Again recommend the risk-centric view on protecting endpoints, as discussed in our prevention post. Some devices possess very sensitive information, and you should collect as much telemetry as possible. Other devices present less risk to the enterprise, and may only warrant log aggregation and periodic scans. There are also competing ideas about where to store the telemetry captured from all these endpoint devices. Some technologies are based upon aggregating the data in an on-premise repository, others perform real-time searches using peer-to-peer technology, and a new model involves sending the data to a cloud-based repository for larger scale-analysis. Again, we don’t get religious about any specific approach. Stay focused on the problem you are trying to solve. Depending on the organization’s sensitivity, storing endpoint data in the cloud may not be politically feasible. On the other hand it might be very expensive to centralize data in a highly distributed organization. So the choice of technology comes down to the adversary’s sophistication, along with the types and locations of devices to be protected. Threat Intel It’s not like threat intelligence is a new concept in the endpoint protection space. AV signatures are a form of threat intel – the industry just never calls it that. What’s different is that now threat intelligence goes far beyond just hashes of known bad files, additionally looking for behavioral patterns that indicate an exploit. Whether the patterns are called Indicators of Compromise (IoC), Indicators or Attack (IoA), or something else, endpoints can watch for them in real time to detect and identify attacks. This new generation of threat intelligence is clearly more robust than yesterday’s signatures. But that understates the impact of threat intel on EDR. These new tools provide retrospection, which is searching the endpoint telemetry data store for newly emerging attack patterns. This allows you to see if a new attack has been seen in the recent past on your devices, before you even knew it was an attack. The goal of detection/forensics is to shorten the window between compromise and detection. If you can search for indicators when you learn about them (regardless of when the attack happens), you may be able to find compromised devices before they start behaving badly, and presumably trigger other network-based detection tactics. A key aspect of selecting any kind of advanced endpoint protection product is to ensure the vendor’s research team is well staffed and capable of keeping up with the pace of emerging attacks. The more effective the security research team is, the more emerging attacks you will be able to look for before an adversary can compromise your devices. This is the true power of threat intelligence. Analytics Once you have all of the data gathered and have enriched it with external threat intelligence, you are ready to look for patterns that may indicate compromised devices. Analytics is now a very shiny term in security circles, which we find very amusing. Early SIEM products offered analytics – you just needed to tell them what to look for. And it’s not like math is a novel concept for detecting security attacks. But security marketers are going to market, so notwithstanding the particular vernacular, more sophisticated analytics do enable more effective detection of sophisticated attacks today. But what does that even mean? First we should define probably the term machine learning, because every company claims they do this to find zero-day attacks and all other badness with no false positives or latency. No, we don’t believe that hype. But the advance of analytical techniques, harnessed by math ninja known as data scientists, enables detailed analysis of every attack to find commonalities and patterns. These patterns can then be used to find malicious code or behavior in new suspicious files. Basically security research teams sets up their math machines to learn about these patterns. Ergo machine learning. Meh. The upshot is that these patterns can be leveraged for both static analysis (what the file looks like) and dynamic analysis (what the software does), making detection faster and more accurate. Response Once you have detected a potentially compromised devices you need to engage your response process. We have written

Share:
Read Post

Endpoint Advanced Protection: The Evolution of Prevention

As we discussed in our last post, there is a logical lifecycle which you can implement to protect endpoints. Once you know what you need to protect and how vulnerable the devices are, you try to prevent attacks, right? Was that a snicker? You’ve been reading the trade press and security marketing telling you prevention is futile, so you’re a bit skeptical. You have every right to be – time and again you have had to clean up ransomware attacks (hopefully before they encrypt entire file servers), and you detect command and control traffic indicating popped devices frequently. A sense of futility regarding actually preventing compromise is all too common. Despite any feelings of futility, we still see prevention as key to any Endpoint Protection strategy. It needs to be. Imagine how busy (and frustrated) you’d be if you stopped trying to prevent attacks, and just left a bunch of unpatched Internet-accessible Windows XP devices on your network, figuring you’d just detect and clean up every compromise after the fact. That’s about as silly as basing your plans on stopping every attack. So the key objective of any prevention strategy must be making sure you aren’t the path of least resistance. That entails two concepts: reducing attack surface, and risk-based prevention. Shame on us if devices are compromised by attacks which have been out there for months. Really. So ensuring proper device hygiene on endpoints is job one. Then it’s a question of deciding which controls are appropriate for each specific employee (or more likely, group of employees). There are plenty of alternatives to block malware attacks, some more effective than others. But unfortunately the most effective controls are also highly disruptive to users. So you need to balance inconvenience against risk to determine which makes the most sense. If you want to keep your job, that is. “Legacy” Prevention Techniques It is often said that you can never turn off a security control. You see the truth in that adage when you look at the technologies used to protect endpoints today. We carry around (and pay for) historical technologies and techniques, largely regardless of effectiveness, and that complicates actually defending against the attacks we see. The good news is that many organizations use an endpoint protection suite, which over time mitigates the less effective tactics. At least in concept. But we cannot fully cover prevention tactics without mentioning legacy technologies. These techniques are still in use, but largely under the covers of whichever endpoint suite you select. Signatures (LOL): Signature-based controls are all about maintaining a huge blacklist of known malicious files to prevent from executing. Free AV products currently on the market typically only use this strategy, but the broader commercial endpoint protection suites have been supplementing traditional signature engines with additional heuristics and cloud-based file reputation for years. So this technique is used primarily to detect known commodity attacks representing the low bar of attacks seen in the wild. Advanced Heuristics: Endpoint detection needed to evolve beyond what a file looks like (hash matching), paying much more attention to what malware does. The issue with early heuristics was having enough context to know whether an executable was taking a legitimate action. Malicious actions were defined generically for each device based on operating system characteristics, so false positives (notably blocking a legitimate action) and false negatives (failing to block an attack) were both common – a lose/lose scenario. Fortunately heuristics have evolved to recognize normal application behavior. This dramatically improved accuracy by building and matching against application-specific rules. But this requires understanding all legitimate functions within a constrained universe of frequently targeted applications, and developing a detailed profile of each covered application. Any unapproved application action is blocked. Vendors need a positive security model for each application – a tremendous amount of work. This technique provides the basis for many of the advanced protection technologies emerging today. AWL: Application White Listing entails implementing a default deny posture on endpoint devices (often servers). The process is straightforward: Define a set of authorized executables that can run on a device, and block everything else. With a strong policy in place, AWL provides true device lockdown – no executables (either malicious or legitimate) can execute without explicit authorization. But the impact to user experience is often unacceptable, so this technology is mostly restricted to very specific use cases, such as servers and fixed-function kiosks, which shouldn’t run general-purpose applications. Isolation: A few years ago the concept of running apps in a “walled garden” or sandbox on each device came into vogue. This technique enables us to shield the rest of a device from a compromised application, greatly reducing the risk posed by malware. Like AWL, this technology continues to find success in particular niches and use cases, rather than as a general answer for endpoint prevention. Advanced Techniques You can’t ignore old-school techniques, because a lot of commodity malware still in circulation every day can be stopped by signatures and advanced heuristics. Maybe it’s 40%. Maybe it’s 60%. Regardless, it’s not enough to fully protect endpoints. So endpoint security innovation has focused on advanced prevention and detection, and also on optimizing for prevalent attacks such as ransomware. Let’s unpack the new techniques to make sense of all the security marketing hyperbole getting thrown around. You know, the calls you get and emails flooding your inbox, telling you how these shiny new products can stop zero-day attacks with no false positives and insignificant employee disruption. But we don’t know of any foolproof tools or techniques, so we will focus the latter half of this series on detection and investigation. But in fairness, advanced techniques do dramatically increase the ability of endpoints to block attacks. Anti-Exploit/Exploit Prevention The first major category of advanced prevention techniques focus on blocking exploits before the device is compromised. Security research has revealed a lot of how malware actually compromises endpoints at a low level, so tools now look for those indicators. You can pull out our favorite

Share:
Read Post

Endpoint Advanced Protection: The Endpoint Protection Lifecycle

As we return to our Endpoint Advanced Protection series, let’s dig into the lifecycle alluded to at the end of our introduction. We laid out a fairly straightforward set of activities required to protect endpoint devices. But we all know straightforward doesn’t mean easy. At some point you need to decide where endpoint protection starts and ends. Additionally, figuring out how it will integrate with the other defenses in your environment is critical because today’s attacks require more than just a single control – you need an integrated system to protect devices. The other caveat before we jump into the lifecycle is that we are actually trying to address the security problem here, not merely compliance. We aim to actually protect devices from advanced attacks. Yes, that is a very aggressive objective, some say crazy, given how fast our adversaries learn. But we wouldn’t be able to sleep at night if we merely accepted mediocrity the of our defenses, and we figure you are similar… so let’s aspire to this lofty goal. Gaining Visibility: You cannot protect what you don’t know about – that hasn’t changed, and isn’t about to. So the first step is to gain visibility into all devices that have access to sensitive data within your environment. It’s not enough to just find them – you also need to assess and understand the risk they pose. We will focus on traditional computing devices, but smartphones and tablets are increasingly used to access corporate networks. Reducing Attack Surface: Once you know what’s out there, you want to make it as difficult as possible for attackers to compromise it. That means practicing good hygiene on devices – making sure they are properly configured, patched, and monitored. We understand many organizations aren’t operationally excellent, but protection is much more effective after you get rid of the low-hanging fruit which making it easy for attackers. Preventing Threats: Next try to stop successful attacks. Unfortunately, despite continued investment and promises of better results, the results are still less than stellar. And with new attacks like ransomware making compromise even worse, the stakes are getting higher. Technology continues to advance, but we still don’t have a silver bullet that prevents every attack… and we never will. It is now a question of reducing attack surface as much as practical. If you can stop the simple attacks, you can focus on advanced ones. Detecting Malicious Activity: You cannot prevent every attack, so you need a way to detect attacks after they penetrate your defenses. There are a number of detection options. Most of them are based on watching for patterns that indicate a compromised device, but there are many other indicators which can provide clues to a device being attacked. The key is to shorten the time between when a device is compromised and when you realize it. Investigating and Responding to Attacks: Once you determine a device has been compromised, you need to verify the successful attack, determine your exposure, and take action to contain the damage as quickly as possible. This typically involves a triage effort, quarantining the device, and then moving to a formal investigation – including a structured process for gathering forensic data, establishing an attack timeline to help determine the attack’s root cause, an initial determination of potential data loss, and a search to determine how widely the attack spread within your environment. Remediation: Once the attack has been investigated, you can put a plan in place to recover. This might involve cleaning the machine, or re-imaging it and starting over again. This step can leverage ongoing hygiene tools such as patch and configuration management, because there is no point reinventing the wheel; tools to accomplish the necessary activities are already in use for day-to-day operations. Gaining Visibility You need to know what you have, how vulnerable it is, and how exposed it is. With this information you can prioritize your exposure and design a set of security controls to protect your assets. Start by understanding what in your environment would interest an adversary. There is something of interest at every organization. It could be as simple as compromising devices to launch attacks on other sites, or as focused as gaining access to your environment to steal your crown jewels. When trying to understand what an advanced attacker is likely to come looking for, there is a fairly short list of asset types – including intellectual property, protected customer data, and business operational data (proposals, logistics, etc.) Once you understand your potential targets, you can begin to profile adversaries likely to be interested in them. The universe of likely attacker types hasn’t changed much over the past few years. You face attacks from a number of groups across the continuum of sophistication. Starting with unsophisticated attackers (which can include a 400 pound hacker in a basement, who might also be a 10-year-old boy), organized crime, competitors, and/or state-sponsored adversaries. Understanding likely attackers provides insight into probable tactics, so you can design and implement security controls to address those risks. But before you can design a security control set, you need to understand where the devices are, as well as their vulnerabilities. Discovery This process finds the devices accessing critical data and makes sure everything is accounted for. This simple step helps to avoid “oh crap” moments – it’s no fun when you stumble over a bunch of unknown devices with no idea what they are, what they have access to, or whether they are cesspools of malware. A number of discovery techniques are available, including actively scanning your entire address space for devices and profiling what you find. This works well and is traditionally the main method of initial discovery. You can supplement with passive discovery, which monitors network traffic to identify new devices from network communications. Depending on the sophistication of the passive analysis, devices can be profiled and vulnerabilities can be identified, but the primary goal of passive monitoring is to discover unmanaged devices faster. Passive discovery

Share:
Read Post

Incite 8/31/2016: Meetings: No Thanks

It’s been a long time since I had an office job. I got fired from my last in November 2005. I had another job since then, but I commuted to Boston. So I was in the office maybe 2-3 days a week. But usually not. That means I rarely have a bad commute. I work from wherever I want, usually some coffee shop with headphones on, or in a quiet enough corner to take a call. I spend some time in the home office when I need to record a webcast or record a video with Rich and Adrian. So basically I forgot what it’s like to work in an office every day. To be clear, I don’t have an office job now. But I am helping out a friend and providing some marketing coaching and hands-on operational assistance in a turn-around situation. I show up 2 or 3 days a week for part of the day, and I now remember what it’s like to work in an office. Honestly, I have no idea how anyone gets things done in an office. I’m constantly being pulled into meetings, many of which don’t have to do with my role at the company. I shoot the breeze with my friends and talk football and family stuff. We do some work, which usually involves getting 8 people in a room to tackle some problem. It’s horribly inefficient, but seems to be the way things get done in corporate life. Why have 2 people work through an issue when you can have 6? Especially since the 4 not involved in the discussion are checking email (maybe) or Facebook (more likely). What’s the sense of actually making decisions when you have to then march them up the flagpole to make sure everyone agrees? And what if they don’t? Do Not Pass Go, Do Not Collect $200. Right, I’m not really cut out for an office job. I’m far more effective with a very targeted objective, with the right people to make decisions present and engaged. That’s why our strategy work is so gratifying for me. It’s not about sitting around in a meeting room, drawing nice diagrams on a whiteboard wall. It’s about digging into tough issues and pushing through to an answer. We’ve got a day. And we get things done in that day. As an aside, whiteboard walls are cool. It’s like an entire wall is a whiteboard. Kind of blew my mind. I stood on a chair and wrote maybe 12 inches from the ceiling. Just because I could, and then I erased it! It’s magic. The little things, folks. The little things. But I digress. As we continue to move forward with our cloud.securosis plans, I’m going to carve out some time to do coaching and continue doing strategy work. Then I can be onsite for a day, help define program objectives and short-term activities, and then get out before I get pulled into an infinite meeting loop. We follow up each week and assess progress, address new issues, and keep everything focused. And minimal meetings. It’s not that I don’t relish the opportunity to connect with folks on an ongoing basis. It’s fun to catch up with my friends. I also appreciate that someone else pays for my coffee and snacks especially since I drink a lot of coffee. But I’ve got a lot of stuff to do, and meetings in your office aren’t helping with that. –Mike Photo credit: “no meetings” from autovac Security is changing. So is Securosis. Check out Rich’s post on how we are evolving our business. We’ve published this year’s Securosis Guide to the RSA Conference. It’s our take on the key themes of this year’s conference (which is really a proxy for the industry), as well as deep dives on cloud security, threat protection, and data security. And there is a ton of meme goodness… Check out the blog post or download the guide directly (PDF). The fine folks at the RSA Conference posted the talk Jennifer Minella and I did on mindfulness at the 2014 conference. You can check it out on YouTube. Take an hour. Your emails, alerts, and Twitter timeline will be there when you get back. Securosis Firestarter Have you checked out our video podcast? Rich, Adrian, and Mike get into a Google Hangout and… hang out. We talk a bit about security as well. We try to keep these to 15 minutes or less, and usually fail. May 31 – Where to Start? May 2 – What the hell is a cloud anyway? Mar 16 – The Rugged vs. SecDevOps Smackdown Feb 17 – RSA Conference – The Good, Bad and Ugly Dec 8 – 2015 Wrap Up and 2016 Non-Predictions Nov 16 – The Blame Game Nov 3 – Get Your Marshmallows Oct 19 – re:Invent Yourself (or else) Aug 12 – Karma July 13 – Living with the OPM Hack May 26 – We Don’t Know Sh–. You Don’t Know Sh– May 4 – RSAC wrap-up. Same as it ever was. Heavy Research We are back at work on a variety of blog series, so here is a list of the research currently underway. Remember you can get our Heavy Feed via RSS, with our content in all its unabridged glory. And you can get all our research papers too. Managed Security Monitoring Selecting a Service Provider Use Cases Evolving Encryption Key Management Best Practices Use Cases Part 2 Introduction Maximizing WAF Value [Management]/blog/maximizing-waf-value-managing-your-waf) Deployment Introduction Recently Published Papers Understanding and Selecting RASP Incident Response in the Cloud Age Building a Threat Intelligence Program Shining a Light on Shadow Devices Building Resilient Cloud Network Architectures Building a Vendor (IT) Risk Management Program SIEM Kung Fu Securing Hadoop Threat Detection Evolution Building Security into DevOps Pragmatic Security for Cloud and Hybrid Networks Applied Threat Intelligence Endpoint Defense: Essential Practices Best Practices for AWS Security The Future of Security Incite 4 U Deputize everyone for security: Our friend Adrian

Share:
Read Post

Endpoint Advanced Protection: The State of the Endpoint Security Union

Innovation comes and goes in security. Back in 2007 network security had been stagnant for more than a few years. It was the same old, same old. Firewall does this. IPS does that. Web proxy does a third thing. None of them did their jobs particularly well, struggling to keep up with attacks encapsulated in common protocols. Then the next generation firewall emerged, and it turned out that regardless of what it was called, it was more than a firewall. It was the evolution of the network security gateway. The same thing happened a few years ago in endpoint security. Organizations were paying boatloads of money to maintain their endpoint protection, because PCI-DSS required it. It certainly wasn’t because the software worked well. Inertia took root, and organizations continued to blindly renew their endpoint protection, mostly because they didn’t have any other options. But in technology inertia tends not to last more than a decade or so (yes, that’s sarcasm). When there are billions of [name your favorite currency] in play, entrepreneurs, investors, shysters, and lots of other folks flock to try getting some of the cash. So endpoint security is the new hotness. Not only because some folks think they can make a buck displacing old and ineffective endpoint protection. The fact is that adversaries continue to improve, both in the attacks they use and the way they monetize compromised devices. One example is ransomware, which some organizations discover several times each week. We know of some organizations which tune their SIEM to watch for file systems being encrypted. Adversaries continue to get better at obfuscating attacks and exfiltration tactics. As advanced malware detection technology matures, attackers have discovered many opportunities to evade detection. It’s still a cat and mouse game, even though both cats and mice are now much better at it. Finally, every organization is still dealing with employees, who are usually the path of least resistance. Regardless of how much you spend on security awareness training, knuckleheads with access to your sensitive data will continue to enjoy clicking pictures of cute kittens (and other stuff…). So what about prevention? That has been the holy grail for decades. To stop attacks before they compromise devices. It turns out prevention is hard, so the technologies don’t work very well. Or they work, but in limited use cases. The challenge of prevention is also compounded by the shysters I mentioned above, who claim nonsense like “products that stop all zero days” – of course with zero, or bogus, evidence. Obviously they have heard you never let truth get in the way of marketing. Yes, there has been incremental progress, and that’s good news. But it’s not enough. On the detection side, someone realized more data could help detect attacks. Both close to the point of compromise, and after the attack during forensic investigation. So endpoint forensics is a thing now. It even has its own category, ETDR (Endpoint Threat Detection and Response), as named by the analysts who label these technology categories. The key benefit is that as more organizations invest in incident response, they can make use of the granular telemetry offered by these solutions. But they don’t really provide visibility for everyone, because they require security skills which are not ubiquitous. For those who understand how malware really works, and can figure out how attacks manipulate kernels, these tools provide excellent visibility. Unfortunately these capabilities are useless to most organizations. But we have still been heartened to see a focus on more granular visibility, which provides skilled incident responders (who we call ‘forensicators’) a great deal more data to figure out what happened during attacks. Meanwhile operating system vendors continue to improve their base technologies to be more secure and resilient. Not only are offerings like Windows 10 and OS X 10.11 far more secure, top applications (primarily office automation and browsers) have been locked down and/or re-architected for stronger security. We also have seen add-on tools to further lock down operating systems, such as Microsoft’s EMET). State of the Union: Sadness We have seen plenty of innovation. But the more things change, the more they stay the same. It’s a different day, but security professionals will still be spending a portion of it cleaning up compromised endpoints. That hasn’t changed. At all. The security industry also faces the intractable security skills shortage. As mentioned above, granular endpoint telemetry doesn’t really help if you don’t have staff who understand what the data means, or how similar attacks can be prevented. And most organizations don’t have that skill set in-house. Finally, users are still users, so they continue to click on things. Basically until you take away the computers. It is really the best of times and the worst of times. But if you ask most security folks, they’ll tell you it’s the worst. Thinking Differently about Endpoint Protection But it’s not over. Remember that “Nothing is over until we say it is.” (hat tip to Animal House – though be aware there is strong language in that clip). If something is not working, you had better think differently, unless you want to be having the same discussions in 10 years. We need to isolate the fundamental reason it’s so hard to protect endpoints. Is it that our ideas of how are wrong? Or is the technology not good enough? Or have adversaries changed so dramatically that all the existing ways to do endpoint security (or security in general) need to be tossed out? Fortunately technology which can help has existed for a few years. It’s just that not enough organizations have embraced the new endpoint protection methods. And many of the same organizations continue to be operationally challenged in security, which doesn’t help – you’re pretty well stuck if you cannot keep devices patched, or take too long to figure out someone is running a remote access trojan on your endpoints (and networks). So in this Endpoint Advanced Protection series, we will revisit and update the work

Share:
Read Post
dinosaur-sidebar

Totally Transparent Research is the embodiment of how we work at Securosis. It’s our core operating philosophy, our research policy, and a specific process. We initially developed it to help maintain objectivity while producing licensed research, but its benefits extend to all aspects of our business.

Going beyond Open Source Research, and a far cry from the traditional syndicated research model, we think it’s the best way to produce independent, objective, quality research.

Here’s how it works:

  • Content is developed ‘live’ on the blog. Primary research is generally released in pieces, as a series of posts, so we can digest and integrate feedback, making the end results much stronger than traditional “ivory tower” research.
  • Comments are enabled for posts. All comments are kept except for spam, personal insults of a clearly inflammatory nature, and completely off-topic content that distracts from the discussion. We welcome comments critical of the work, even if somewhat insulting to the authors. Really.
  • Anyone can comment, and no registration is required. Vendors or consultants with a relevant product or offering must properly identify themselves. While their comments won’t be deleted, the writer/moderator will “call out”, identify, and possibly ridicule vendors who fail to do so.
  • Vendors considering licensing the content are welcome to provide feedback, but it must be posted in the comments - just like everyone else. There is no back channel influence on the research findings or posts.
    Analysts must reply to comments and defend the research position, or agree to modify the content.
  • At the end of the post series, the analyst compiles the posts into a paper, presentation, or other delivery vehicle. Public comments/input factors into the research, where appropriate.
  • If the research is distributed as a paper, significant commenters/contributors are acknowledged in the opening of the report. If they did not post their real names, handles used for comments are listed. Commenters do not retain any rights to the report, but their contributions will be recognized.
  • All primary research will be released under a Creative Commons license. The current license is Non-Commercial, Attribution. The analyst, at their discretion, may add a Derivative Works or Share Alike condition.
  • Securosis primary research does not discuss specific vendors or specific products/offerings, unless used to provide context, contrast or to make a point (which is very very rare).
    Although quotes from published primary research (and published primary research only) may be used in press releases, said quotes may never mention a specific vendor, even if the vendor is mentioned in the source report. Securosis must approve any quote to appear in any vendor marketing collateral.
  • Final primary research will be posted on the blog with open comments.
  • Research will be updated periodically to reflect market realities, based on the discretion of the primary analyst. Updated research will be dated and given a version number.
    For research that cannot be developed using this model, such as complex principles or models that are unsuited for a series of blog posts, the content will be chunked up and posted at or before release of the paper to solicit public feedback, and provide an open venue for comments and criticisms.
  • In rare cases Securosis may write papers outside of the primary research agenda, but only if the end result can be non-biased and valuable to the user community to supplement industry-wide efforts or advances. A “Radically Transparent Research” process will be followed in developing these papers, where absolutely all materials are public at all stages of development, including communications (email, call notes).
    Only the free primary research released on our site can be licensed. We will not accept licensing fees on research we charge users to access.
  • All licensed research will be clearly labeled with the licensees. No licensed research will be released without indicating the sources of licensing fees. Again, there will be no back channel influence. We’re open and transparent about our revenue sources.

In essence, we develop all of our research out in the open, and not only seek public comments, but keep those comments indefinitely as a record of the research creation process. If you believe we are biased or not doing our homework, you can call us out on it and it will be there in the record. Our philosophy involves cracking open the research process, and using our readers to eliminate bias and enhance the quality of the work.

On the back end, here’s how we handle this approach with licensees:

  • Licensees may propose paper topics. The topic may be accepted if it is consistent with the Securosis research agenda and goals, but only if it can be covered without bias and will be valuable to the end user community.
  • Analysts produce research according to their own research agendas, and may offer licensing under the same objectivity requirements.
  • The potential licensee will be provided an outline of our research positions and the potential research product so they can determine if it is likely to meet their objectives.
  • Once the licensee agrees, development of the primary research content begins, following the Totally Transparent Research process as outlined above. At this point, there is no money exchanged.
  • Upon completion of the paper, the licensee will receive a release candidate to determine whether the final result still meets their needs.
  • If the content does not meet their needs, the licensee is not required to pay, and the research will be released without licensing or with alternate licensees.
  • Licensees may host and reuse the content for the length of the license (typically one year). This includes placing the content behind a registration process, posting on white paper networks, or translation into other languages. The research will always be hosted at Securosis for free without registration.

Here is the language we currently place in our research project agreements:

Content will be created independently of LICENSEE with no obligations for payment. Once content is complete, LICENSEE will have a 3 day review period to determine if the content meets corporate objectives. If the content is unsuitable, LICENSEE will not be obligated for any payment and Securosis is free to distribute the whitepaper without branding or with alternate licensees, and will not complete any associated webcasts for the declining LICENSEE. Content licensing, webcasts and payment are contingent on the content being acceptable to LICENSEE. This maintains objectivity while limiting the risk to LICENSEE. Securosis maintains all rights to the content and to include Securosis branding in addition to any licensee branding.

Even this process itself is open to criticism. If you have questions or comments, you can email us or comment on the blog.